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We study the role of preferred habitat in understanding the economic
effects of the Federal Reserve’s quantitative easing (QE). Using high-
frequency identification and exploiting the structure of the primary
market forUS Treasuries, we isolate demand shocks that are transmitted
solely through preferred habitat channels but otherwisemimicQE shocks.
We document large localized yield curve effects when financial markets
are disrupted. Our calibratedmodel, which embeds preferred habitat in
a New Keynesian framework, can largely account for the observed finan-
cial effects of QE. QE is modestly stimulative for output and inflation,
but alternative policy designs can generate stronger effects.

I. Introduction

While evaluating thefirst rounds of quantitative easing (QE), thenFed chair
Ben Bernanke observed, “The problemwithQE is it works in practice but
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it doesn’t work in theory.” Indeed, QE was successful in reducing short-
and long-term interest rates, but the mechanisms behind these effects
are still not well understood. Nevertheless, this theoretical ambiguity has
not stopped the Fed from continuing to utilize QE programs, including
during the onset of COVID-19 and then reversing course by implementing
quantitative tightening (QT) in response to recent inflationary pressures.
Although workhorse macroeconomic models imply that Treasury de-

mand is determined solely by economic agents’ intertemporal consump-
tion decisions, several explanations have been put forth to rationalize the
workings of QE. For instance, QE could have signaled to financial mar-
kets a commitment to keep short-term interest rates low for a long time
(forward guidance). Or perhaps the Fed exploited financial market fric-
tions (limited arbitrage and market segmentation) by purchasing securi-
ties in a particular segment. Alternatively, large-scale asset purchases by
the Fed could signal a poor state of the economy, pushing interest rates
down (Delphic effect).1 Given the paucity of QE events, it has been diffi-
cult to provide clear empirical evidence for (and assess the relative con-
tributions of) the proposed channels. Moreover, QE policies have been
implemented as responses to severe macrofinancial conditions, which
further confounds identification and interpretation and raises questions
about the effectiveness of QT going forward.
The objective of this paper is to unbundle the effects of QE by focusing

on a specific channel: market segmentation in the form of preferred habi-
tat, which posits that certain investors have preferences for specificmaturi-
ties. To this end, we take the following approach. First, we identify shifts in
private demand for Treasuries that mimic QE but are independent of all
other plausible channels of QE. Next, we analyze the propagation of these
demand shocks across financial markets. In particular, we assess the ability
of preferred habitat theory to rationalize the observed responses, and we
confirm key predictions regarding pass-through of demand shocks in
and out of financial crises. Informed by our empirical analysis, we then de-
velop a general equilibrium macroeconomic model designed to study QE
policies.Wefind that the preferredhabitat channel accounts for the bulk of
the observed response to QE in financial markets. Ourmodel suggests that
the first rounds of QE had modest stimulative effects on output and infla-
tion, but given the relative healthof financialmarkets in thepresent period,
QTalone is unlikely to be successful in reducing inflation to target. Finally,

1 For surveys, see Campbell et al. (2012), Martin and Milas (2012), and Bhattarai and
Neely (2020).
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we explore alternative QE implementations that can help improve the de-
sign of future asset purchases.
Our analysis starts with the key insight that the mechanism through

which market segmentation and preferred habitat forces operate is not
the source of Treasury quantity shocks per se but rather howmarginal in-
vestors absorb these shocks. We utilize the primary market for Treasuries
to identify demand shifts that are independent of all QE propagation
mechanisms besides preferred habitat. Although the primary market is
the venue through which the Treasury issues debt (a supply-side action),
the institutional structure of Treasury auctions has a number of desirable
features for identifying demand-side shocks. Because all of the supply in-
formation is announced by the Treasury in advance of each auction, the
release of the auction results reveal unexpected shifts in demand alone,
allowing us to rule out a host of confounding factors. By utilizing intraday
changes in Treasury yields around the close of Treasury auctions, we con-
struct a novel measure of Treasury demand shocks.
We document that demand shocks are reasonably large and persistent,

with effects on yields typically lasting for many weeks following the auc-
tion. Furthermore, the surprise movements in demand are driven by in-
stitutional investors, such as foreign monetary authorities, investment
funds, insurance companies, and the like. We show that these shocks
are not driven by market-wide changes in expectations about inflation,
output, or other general macrofinancial conditions. Therefore, variation
in Treasury yields around the release of Treasury auction results can help
us to isolate the effect of idiosyncratic purchases in specific asset seg-
ments on the level and shape of the yield curve, which is difficult to
achieve by examining only QE events. Because Treasury auctions are fre-
quent and information spans many decades, we can study state depen-
dence in the effect of targeted purchases of assets (e.g., crisis vs. noncrisis
states), which is instrumental for understanding how QE programs can
work in normal times. Importantly, because Treasury auctions for specific
maturities are spread over time, we can identify changes in demand for
government debt of specific maturities and trace the effect of these
changes on other parts of the yield curve. In this sense, we have natural
experiments that can mimic targeted purchases of the Fed during QE
programs.
We use our auction demand shocks to empirically evaluate the localiza-

tion hypothesis, a characteristic prediction of preferred habitat theory
and a key input into our subsequent quantitative analyses. Using a simple
regression specification informed by theory, we document strong evi-
dence in favor of localized yield curve effects during financial crisis peri-
ods (i.e., the location of the demand shock inmaturity spacematters, and
the effects on the yield curve are larger for bonds of similar maturities).
These results imply potentially powerful effects of QE on targeted yields
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in crises. However, we cannot reject the null of no localization effects dur-
ing normal times, which suggests a limited use of QE as a conventional
policy tool.
Building on seminal work by Vayanos and Vila (2021), we develop a

general equilibrium model with risk-free and risky debt to rationalize
the empirical responses of the yield curve to shocks in demand for Trea-
sury securities and to better understand the effects of QE on financial
markets and the broader macroeconomy. We calibrate the model to
match a variety of moments for yields and macroeconomic variables as
well as the responses of yields to surprise movements in private demand
during Treasury auctions in crisis and noncrisis times. When fed a shock
mimicking QE1 in size and duration, our model generates movements
in the yield curve remarkably close to those observed in the data. This
is consistent with the view that QE works mainly via market segmentation
and preferred habitat and that the net effect of other channels is small.
Given the disruption in financial markets, our calibration implies that
QE1 stimulated output and inflation by as much as a 50–75 basis point
rate cut.
Policy experiments in our model indicate that these relatively modest

macroeconomic effects are sensitive to implementation details. In partic-
ular, holding securities on the balance sheet longer (and making this
clear to markets on announcement) boosts the stimulative power of
QE significantly. The expansionary effects of QE fall precipitously when
undertaken during periods when bondmarkets are relatively healthy. We
also show that QE may have unintended consequences: uncertainty sur-
rounding the Fed’s asset purchases may lead to excess macroeconomic
volatility, thus calling for policy guidance. Finally, QE programs tilted to-
ward risky assets (e.g., mortgage-backed securities [MBS]) aremore effec-
tive in stimulating the economy, particularly when these assets are more
volatile. Our results indicate that QE should remain in policy makers’
toolkit but must be utilized with caution and realistic expectations. For
example, while our model predicts that the Fed’s ongoing QT program
is disinflationary, the effects are similar to a 25–50 basis point rate hike
and thus dwarfed by the current rise in inflation.
Our paper makes three primary contributions. Theoretically, we em-

bed a financial model of the entire term structure of interest rates for
risky and safe assets within a dynamic model of the macroeconomy and
thus can provide an integrated analysis of QE.2 This is important because
previous studies of QE largely focus separately on either financial vari-
ables or macroeconomic variables. For example, Krishnamurthy and
Vissing-Jorgensen (2012) and Chodorow-Reich (2014) study the effects of

2 Ray (2019) develops additional analytical and normative results in a version of this
model.
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QE announcements on financial markets but do not quantify the macro-
economic effects of QE. Greenwood and Vayanos (2014), Greenwood,
Hanson, and Vayanos (2016), King (2019a), Vayanos and Vila (2021), and
related work explore the financial market implications of preferred hab-
itat theory but are silent on any potential effects on output or inflation.
On the other hand, recent developments in macroeconomic theory
(e.g., Cúrdia and Woodford 2011; Gertler and Karadi 2011, 2013; Chen,
Cúrdia, and Ferrero 2012; Carlstrom, Fuerst, and Paustian 2017; Ippolito,
Ozdagli, and Perez-Orive 2018; Karadi and Nakov 2020; Sims and Wu
2020) concentrate on aggregate variables but are unable to capture the
rich dynamics in bond markets that we document. Moreover, many of
these theories rely on reserve requirements or moral hazard/enforce-
ment constraints on banks as the key channel through which QE works.
In contrast, we focus on the interaction of preferred habitat with limited
risk-bearing capacity in bond markets, which we argue is a core mecha-
nism behindQE effects. Our quantitativemodelmerges these literatures:
we utilize financial data and high-frequency identification to discipline
our model, which we then use to quantify the macroeconomic effects
of QE.
Empirically, we develop a novel, high-frequency measure of demand

shocks for Treasuries by exploiting the institutional structure of Treasury
auctions. A well-identified shock series is crucial for testing various macro-
finance theories, and we hope ourmeasure will be analyzed and extended
in future work in a fashion similar to the high-frequency monetary shocks
pioneered by Kuttner (2001), Bernanke and Kuttner (2005), Gürkaynak,
Sack, and Wright (2007), and others. Our approach is a natural comple-
ment to existing empirical approaches estimating affine term structure
models (Hamilton and Wu 2012; Kaminska and Zinna 2020) or demand
systems (Koijen et al. 2021) using lower-frequency data.
Combining the insights of ourmodel with our high-frequency demand

shocks (and building on extensive research studying how QE purchases
impacted the yield curve; e.g., Cahill et al. 2013; D’Amico and King 2013;
Li and Wei 2013; King 2019b), we provide strong empirical evidence for
state-dependent (i.e., crisis vs. noncrisis) localization effects in the spill-
overs across maturities and asset classes of surprise movements in Treasury
demand. Put differently, we use QE-like events (rather than QE directly,
in the spirit of Fieldhouse, Mertens, and Ravn [2018] and Di Maggio,
Kermani, and Palmer [2020]) in order to exploit rich cross-sectional and
time series variation to obtain sharp identification and precise estimates
of demand shock spillovers. This new finding confirms one of the charac-
teristic predictions of our model (and preferred habitat theory more gen-
erally), and thus our paper shows that thesemechanisms are crucial in un-
derstanding the Treasury market and channels through which QE affects
yields.
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Our paper is related to a broad literature studying Treasury auctions,
investigating how yields move around Treasury auctions (e.g., Lou, Yan,
and Zhang 2013; Fleming and Liu 2016) and respond to variation in
demand (e.g., Cammack 1991; Beetsma et al. 2016, 2018; Forest 2018).
However, our focus is not Treasury auctions in and of themselves; rather,
we exploit the institutional structure of the primary market for Treasuries
to better understand the mechanisms behind QE. Relative to this early
important work, we structurally link demand shocks identified fromTrea-
sury auctions to a general equilibrium preferred habitat model.

II. Data and Institutional Details

In this section, we describe the primary sources of our data and present
basic statistics. First, we describe the US Treasury auctions for US govern-
ment notes and bonds (coupon-bearing nominal securities). Second,
we describe the details of the data regarding intraday secondary market
Treasury prices.

A. Primary Market for Treasury Securities

The Treasury sells newly issued securities to the public on a regular basis
through auctions. In recent years, 2-, 3-, 5- and 7-year notes are auctioned
monthly. Ten-year notes and 30-year bonds are auctioned in February,
May, August, and November, with reopenings in the other 8 months. The
frequency of auctions has changed over time. For example, 30-year bonds
were not issued between 1999 and 2006 and were issued only twice a year
between 1993 and 1999, and 20-year bonds were auctioned in May 2020,
the first time since 1986.3

There are two types of bids: noncompetitive and competitive. Noncom-
petitive bidders agree to accept the terms settled at the auction and are
typically limited to $5 million per bidder. Competitive bidders submit the
amount they would like to purchase, not exceeding 35% of the amount
offered at auction, and the price (the interest rate) at which they would
like to make the purchase.
Auction participants include primary dealers, other nonprimary bro-

kers and dealers, investment funds (e.g., pension, hedge, mutual), insur-
ance companies, depository institutions, foreign and international entities
(governmental and private), the Federal Reserve System Open Market
Account (SOMA), and individuals. These participants are classified into

3 In our analysis, we exclude inflation-protected securities and floating rate notes be-
cause these securities have different structural arrangements than simple coupon-bearing
nominal securities. We also exclude Treasury bills (zero coupon securities with maturity
1 year or less) because the QE programs mainly bought long-maturity nominal US govern-
ment debt.
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three groups: primary dealers, direct bidders, and indirect bidders. Pri-
mary dealers (brokers and banks) trade on their account with the Federal
Reserve Bank of New York; they are required to participate in every Trea-
sury auction and typically buy the largest share of auctioned debt. Direct
bidders are nonprimary dealers who submit bids for their own proprie-
tary accounts. Indirect bidders submit competitive bids via a direct sub-
mitter, including foreign and international monetary authorities placing
bids through the Federal Reserve Bank of New York. Additionally, the
Treasury divides investors into the following classes: investment funds,
pension and retirement funds and insurance companies, depository insti-
tutions, individuals, dealers and brokers, foreign and international, Fed-
eral Reserve System, and other.4

Figure 1 depicts the stages of a Treasury auction.5 First, the Treasury re-
leases all pertinent information regarding an upcoming auction a few
days prior to the auction date. An announcement includes the amount
offered, additional security information (e.g., maturity, CUSIP [Commit-
tee on Uniform Securities Identification Procedures], coupon schedule),
and other information describing the rules of the auction. After the an-
nouncement, investors may submit bids up until the auction closing time.
For typical note andbond auctions, noncompetitive bidsmay be submitted
by 12:00 p.m., while the deadline for competitive bids is 1:00 p.m.
After the auction closes, competitive bids are accepted in ascending or-

der (in terms of yields) until the quantity meets the amount offeredminus
the amount of noncompetitive bids. Winning bidders receive the same

4 Data for announcement and results of each auction since late 1979 are available from
https://treasurydirect.gov. Data regarding amounts accepted and tendered by bidder type
(primary dealer, direct, and indirect) are available starting in 2003. The Treasury provides
information regarding allotment by investor class starting in 2000 (for a breakdown by
types and class of bidders in greater detail, see Fleming 2007). Appendix F (apps. B–F
are available online) provides detailed information on all data sources.

5 Figure B2 (figs. B1–B31 are available online) presents a typical announcement of an
auction and its results.

FIG. 1.—Auction timing.
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yield as the highest accepted bid. Once the winning bids are determined,
auction results are released immediately; beginning in the early 2000s, re-
sults are released within minutes of the close of the auction (see Garbade
and Ingber 2005). Besides the winning yield, the Treasury announces var-
ious aggregate statistics regarding the bidding, such as the total demand
(bids tendered) for the security and the composition of bids and winners
by investor and bid type. One particularly salient piece of information is
the bid-to-cover ratio, the ratio of all bids received to all bids accepted. A
few days after the close of an auction, the Treasury delivers the securities
and charges the winning bidders for payment of the security.
Panel A of table 1 presents summary statistics for note and bond auc-

tions from 1995–2017, the period for which we have intraday Treasury
yields (fig. B1 plots the number and size of note and bond auctions split
by maturity). Since 1995, a typical offering of $20 billion generates more
than $50 billion in demand. Primary dealers account for the largest source
of demand (bid-to-cover ratio ≈2), but other types of bidders also account
for a large fraction of auction offerings. Primary dealers purchase ≈60%
of auctioned Treasuries, with the rest split between investment funds
and foreign buyers. There is considerable variation in the offered amounts
(standard deviation ≈$9 billion) as well as the level and composition of de-
mand (standard deviation of bid-to-cover ratio ≈0.5, and standard devia-
tion of bid-to-cover ratio for primary dealers ≈0.35).

B. Intraday Treasury Yields

Once a Treasury security auction is complete, the security is issued to the
winning bidders and the security is free to trade in the over-the-counter
(OTC) secondary market. Following the announcement of an auction
but before issuance, there is a forward market for newly auctioned Trea-
suries. The forward contracts mature on the same day as the securities
are issued, and hence this market is referred to as the when-issued mar-
ket. Our data on secondary market yields (including when-issued yields)
comes from GovPX, which provides comprehensive intraday coverage of
all outstanding US Treasuries for the period 1995–2017. We use changes
in intraday Treasury yields in order to construct market-based measures
of demand surprises occurring during Treasury auctions.6

6 An early draft of this paper used Treasury futures to construct auction demand shocks.
Treasury futures provide a natural market-based measure of such shifts, but in practice
movements in the secondary market around auctions are not predictable. In addition,
Treasury futures markets are less liquid and cannot be not tied to a specific CUSIP-level
bond. Thus, we construct demand shocks using secondary market Treasury yields, but
our results are robust to using futures (see Gorodnichenko and Ray 2017).
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TABLE 1
Auction and Shock Summary Statistics

Mean Median
Standard
Deviation Minimum Maximum Observations

A. Auction Summary Statistics

Offering amount
(US$ billions) 22.48 22.00 9.02 5.00 44.00 1,047

Total tendered
(US$ billions) 61.98 57.91 29.91 11.35 160.96 1,047

Term (years) 8.23 5.00 8.68 2.00 30.25 1,047
High yield 3.01 2.68 1.83 .22 7.79 1,047
Bid-to-cover ratio 2.60 2.58 .45 1.22 4.07 1,047
Bid-to-cover ratio by type:a

Direct bidders .22 .21 .16 .00 .80 827
Indirect bidders .54 .53 .17 .03 1.05 827
Primary dealers 1.92 1.87 .34 .98 3.12 827

Fraction accepted by type:b

Depository institutions .59 .15 2.09 .00 31.79 896
Individuals .98 .23 2.13 .00 18.93 896
Dealers 53.44 53.07 16.22 12.08 97.73 896
Pensions .11 .01 .74 .00 20.91 896
Investment funds 25.81 23.05 16.95 .23 73.91 896
Foreign 19.22 18.10 8.74 .34 61.01 896
Other .25 .03 .91 .00 13.46 896

B. Shock Summary Statistics

Dt .03 .00 2.12 28.30 17.80 1,047
Dð2YÞ

t 2.06 .00 1.39 25.20 4.40 256
Dð3YÞ

t .15 .10 1.32 25.30 5.00 134
Dð5YÞ

t .20 .30 1.94 25.55 8.50 233
Dð7YÞ

t 2.28 .05 2.10 28.30 5.50 106
Dð10YÞ

t 2.04 2.05 2.55 26.80 12.20 186
Dð30YÞ

t .09 2.15 3.28 27.40 17.80 132

C. Shocks across Regimes

Nonzero lower bound .08 .10 2.02 27.40 12.20 563
Zero lower bound 2.03 .00 2.23 28.30 17.80 484
Expansion .03 .00 2.03 28.30 17.80 963
Recession 2.07 2.05 2.95 27.10 9.50 84

D. Nonauction Shocks

~Dð2YÞ
t 2.07 .00 1.32 219.20 11.00 1,225

~Dð5YÞ
t 2.01 .00 1.13 217.40 12.90 1,924

~Dð10YÞ
t 2.01 .00 1.03 213.30 8.90 2,151

~Dð30YÞ
t .01 .00 .92 28.50 5.60 1,914

Note.—Panel A presents summary statistics for Treasury note and bond auctions from
1995–2017 for which we have intraday data. Panel B summarizes demand shocks Dt 5
yt,post 2 yt,pre, the intraday change in Treasury yields before and after the close of an auction
(in basis points). For newly issued securities, the yields are from when-issued trades. For re-
opened securities, the yields are from secondary market trades. Panel B also reports statistics
for shocksDðmÞ

t 5 yðmÞ
t,post 2 yðmÞ

t,pre separately formajormaturitiesm 5 2, 3, 5, 7, 10, 30 years. Panel C
reports statistics separately for binding/nonbinding zero lower bound periods and reces-
sions/expansions. Panel D reports synthetic shocks on nonauction dates ~DðmÞ

t 5 yðmÞ
t,post 2 yðmÞ

t,pre

using the same intraday windows around 1:00 p.m. on nonauction dates. The yields are from
secondary market trades for on-the-run securities for maturities m 5 2, 5, 10, 30 years.

a Indicates that the moments are computed from 2003 onward, the period for which
these data are available.

b Indicates that the moments are computed for 2000 onward, the period for which these
data are available.



III. Quantifying Demand Shocks

This section describes our procedure to measure surprise movements in
Treasury yields around Treasury auctions and documents properties of
these surprises. Our key assumption is that in a small window around
the release of Treasury auction results, shifts in Treasury yields reflect
unexpected changes in market beliefs about the demand for Treasu-
ries with a specific maturity. Indeed, the Treasury announces an offered
amount well before an auction happens, thus fixing supply in advance of
investor bidding. Hence, between the announcement and close of the
auction, Treasury yields should move only in response to unexpected
changes in demand conditions. Our high-frequency approach isolates
variation only due to unexpected shifts in demand arising from a specific
auction.

A. Shock Construction

Let yðmÞ
t,pre, y

ðmÞ
t,post be the Treasury yields before and after the close of the auc-

tion on date t with maturity m. We measure the surprise movements in
Treasury yields as

DðmÞ
t 5 yðmÞ

t,post 2 yðmÞ
t,pre: (1)

For all auctions, yðmÞ
t,pre is the last yield observed 10minutes before the close

of the auction, while yðmÞ
t,post is the first yield observed 10 minutes following

the release of the auction results. If the date t auction is a reopening of
a previously issued security, we use secondary market yields to construct
our shocks. If the date t auction is instead a newly issued security, we
use yields from the when-issued market. In our sample, auctions typically
close at 1:00 p.m. or less frequently at 11:30 a.m. However, the time be-
tween the close of the auction and the release of the results is a function
of how long it takes the Treasury to compile the results. The Treasury be-
gan releasing results within minutes in the early 2000s but in the 1990s
frequently took longer. We collect wire reports from Bloomberg, which
gives a tight upper bound on the release time.7

Summary statistics of our constructed shock measures DðmÞ
t are pre-

sented in panel B of table 1 (time series are plotted in fig. B3). The
shock means are close to zero (and statistical tests do not reject the null
of zero means). Moreover, there is essentially no serial correlation in DðmÞ

t

7 Lou, Yan, and Zhang (2013) and Fleming and Liu (2016) show that there are predictable
price movements in the days and hours before and after the auction, but price movements
are unpredictable very near the close of the auction. Hence, the use of small intraday
windows is key to identifying unanticipated demand shocks.
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(r 5 20:03). Hence, these summary statistics indicate that surprises are
not systematic and do not contain predictable movements. In our sample
period, the standard deviation of DðmÞ

t increases in maturity m and ranges
from 1.4 basis points for 2-year maturity to 3.3 basis points for 30-year ma-
turity. For comparison, Chodorow-Reich (2014) reports that the largest
intraday movements in yields following a QE announcement occurred
on March 18, 2009, when Treasury (5-year) yields fell by 23 basis points.
Panel C presents statistics separately for periods of a binding/nonbind-
ing zero lower bound and for expansion/recessions. Regardless of re-
gime, on average our demand shocks are close to zero.
To verify that these shocks are not spurious, we also report movements

inTreasury yields onnonauction days (panel Dof table 1; for days without
auctions, the same pre and post windows are used as auctions in the same
period). In all cases, the variance of the shocks on auction dates is larger
than onnonauction dates. This pattern further suggests that surprise auc-
tion results influence secondary market Treasury yields.

B. Narrative Evidence

To provide a better understanding of what forces are behind these sur-
prisemovements, figure 2 plots 30-year Treasury yields during two 30-year
Treasury bond auctions. The dashed lines denote the close of the auction
and the release of results, respectively. The first auction occurred on De-
cember 9, 2010. This auction was a reopening of previously issued 30-year
bonds from the month prior. Yields are relatively stable in the lead up
to the close of the auction but drop sharply and immediately following
the release of the results. The Financial Times wrote:

Large domestic financial institutions and foreign central banks
were big buyers at an auction of 30-year US Treasury bonds on
Thursday. “Investors weren’t messing around . . . You don’t
get the opportunity to buy large amounts of paper outside the
auctions and ‘real money’ were aggressive buyers.” (Mackenzie
2010)

The second is from an auction of newly issued bonds on August 11,
2011. When-issued yields were relatively stable prior to auction close,
but after the close and release of the auction results, yields immediately
rose. The Financial Times wrote:

An auction of 30-year US Treasury bonds saw weak demand . . .
bidders such as pension funds, insurers and foreign govern-
ments shied away. “There’s not too many ways you can slice this
one, it was a very poorly bid auction.” (Demos 2011)
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We interpret these two examples as follows. Before the auctions closed,
themarket information set consists of all the supply information for both
outstanding securities and the amount on offer for the current 30-year
auction. The 30-year Treasury yields reflect beliefs about the expected
path of short-term interest rates, inflation expectations, and demand
for long-maturity Treasury securities. After the auctions closed and the re-
sults were released, the only update to the information set is the news re-
garding the bidding that took place in the auction, which solely reflects
demand for Treasury debt. The change in the 30-year yields is a reaction
to the unexpected shift in Treasury demand revealed at the auction (of
course, this shift reflects many factors, including individual investors’ be-
liefs about interest rates and economic fundamentals).
These articles also highlight why auctions can have important elements

of price discovery: when investors wish to purchase large amounts of Trea-
suries to meet their needs, they may prefer to use auctions rather than
make large transactions on the secondarymarket. As a result, auctions re-
veal new information about demand for government debt that is not al-
ready reflected in OTC secondary market trades.

FIG. 2.—Intraday treasury yield movements. The figure shows intraday movements in
30-year Treasury yields around the announcement of auction results for two selected auc-
tion dates. Dashed lines denote the close of an auction and release of results. In both auc-
tions considered, auctions closed at 1:00 p.m., and results were released a few minutes
thereafter.
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C. Demand Determinants

The institutional structure of the primary market and narrative evidence
from the financial press suggest that DðmÞ

t captures unexpected shifts in
the demand for Treasuries. But because DðmÞ

t is an equilibrium response,
it is important to establish that these shifts are related to observable mea-
sures of demand. Table 2 presents formal evidence by regressing our
shocks on measures of demand reported at the auction:

DðmÞ
t 5 aðmÞ 1 bðmÞX ðmÞ

t 1 εðmÞ
t , (2)

where X ðmÞ
t are various estimates of the shift in demand at a given auction.

Columns 1–6 present estimates separately for auctions of different maturi-
ties, while column 7 pools across maturities. Panel A uses changes in the
bid-to-cover ratio (the change is taken relative to the most recent note
or bond auction), which is a natural measure of demand shifts, since an
increase in the bid-to-cover ratio indicates higher demand relative to the
amount of Treasuries offered. Consistent with our interpretation of DðmÞ

t

as a reaction to unexpected demand, panel A shows that an increase in
the bid-to-cover ratio predicts a larger intraday fall in Treasury yields fol-
lowing the close of the auction.8

Our results show that the effect of typical surprise increases in demand
is economically large. For example, a 1 standard deviation (0.45) increase
in the bid-to-cover ratio in a Treasury auction for 10-year notes leads to
a 2:66 � 0:45 ≈ 1:2 basis point decline in 10-year Treasury yields. We
can back out a simple estimate for the sensitivity of yields as a function
of the change in quantity demanded (in terms of dollars). A typical offer-
ing amount in a 10-year Treasury note auction is between $20 and $30 bil-
lion. Hence, our estimates imply that an increase in demand for 10-year
Treasuries by $10billiondecreases 10-year yields by 2:66 � ð10=30, 10=20Þ ≈
ð0:89, 1:33Þ basis points.
In order to assess sensitivity of our demand shocks to changes in de-

mand by bidder type, panel B reports estimates of equation (2) using
the change in the bid-to-cover ratio of indirect bidders, direct bidders,
and primary dealers. The sensitivity of surprises DðmÞ

t to unexpected de-
mand of indirect bidders increases with maturity. For example, a unit in-
crease in the bid-to-cover ratio for indirect bidders decreases the yields of
2-year Treasuries by 2.24 basis points and the yields of 30-year Treasuries
by 11.3 basis points. Direct bidders exhibit the same pattern, although

8 Figure B4 reports binscatter plots of these results. Table 2 uses changes, as there is pre-
dictable low-frequency movement in the bid-to-cover ratio (figs. B7, B8). However, our re-
sults are not sensitive to this choice. Figures B5 and B6 repeat our analysis using the bid-to-
cover ratio in levels or a residualized measure of the bid-to-cover ratio from a univariate
AR(4) model.
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TABLE 2
Demand Shocks and Measures of Demand

Dð2YÞ
t

(1)
Dð3YÞ

t

(2)
Dð5YÞ

t

(3)
Dð7YÞ

t

(4)
Dð10YÞ

t

(5)
Dð30YÞ

t

(6)
Pool Dt

(7)

A. Total Bid-to-Cover Ratio

Bid-to-cover ratio 2.74*** 21.51*** 21.25*** 25.67*** 22.66*** 24.22*** 21.64***
(.18) (.27) (.23) (1.22) (.45) (1.23) (.17)

Observations 255 134 233 106 186 132 1,046
R2 .08 .23 .10 .28 .17 .21 .12

B. Bid-to-Cover Ratio by Bidder Type

Indirect 22.24*** 23.83*** 24.22*** 28.34*** 25.59*** 211.30*** 25.10***
(.42) (.92) (.75) (1.89) (.97) (2.30) (.57)

Direct 2.41 2.08 21.14 27.40*** 21.03 23.29 21.63**
(.74) (1.00) (1.19) (2.06) (1.03) (3.24) (.73)

Primary 2.56** 2.89** 2.76** 21.28 21.74*** 21.32 2.86***
(.23) (.41) (.35) (1.82) (.54) (1.38) (.24)

Observations 163 120 172 106 150 115 826
R2 .20 .25 .17 .34 .28 .37 .23

C. Fraction Accepted by Bidder Type

Investment fund 23.03*** 23.34*** 23.93*** 211.76*** 23.67** 212.96*** 25.37***
(.90) (1.13) (1.20) (2.32) (1.53) (3.09) (.73)

Foreign 22.13** 25.80*** 24.21*** 215.23*** 25.35*** 216.07*** 25.80***
(.98) (2.02) (1.43) (4.37) (1.42) (3.92) (.79)

Miscellaneous 21.81 23.62 23.14 213.91*** 24.37 24.97 23.96**
(2.29) (3.74) (2.20) (3.50) (3.72) (10.13) (1.61)

Observations 200 121 185 106 164 119 895
R2 .08 .14 .07 .30 .11 .28 .13

Note.—The table shows regressions of demand shocks DðmÞ
t on the change in bid-to-cover ratio and fractions accepted, total and broken up by bidder

type. Columns 1–6 restrict the sample to include only auctions of maturities m 5 2, 3, 4, 5, 7, 19, 30 years; col. 7 pools across all auctions. Changes in the
bid-to-cover ratio and fraction accepted are computed relative to the most recent note or bond auction. Newey-West (nine lags) standard errors are in
parentheses.
** Statistically significant at the 5% level.
*** Statistically significant at the 1% level.



the coefficients are smaller. The sensitivity to changes in the bid-to-cover
ratio coming from primary dealers is also smaller. When we pool across
maturities, demand of direct and especially indirect bidders generates ce-
teris paribus more variation in Treasury yields than demand of primary
dealers, although for all bidder types an increase in bidder demand im-
plies a decline in intraday yields DðmÞ

t .
Panel C uses additional investor allotment data from the Treasury to

break down the amount accepted by types of bidders: investment funds,
foreign, dealers, and remaining smaller investors classes (aggregated into
amiscellaneous category). Since the fractions by group addup to 1, we set
dealers as the leave-out category. Our estimates suggest that as the frac-
tion accepted for investment funds and foreign buyers increases, DðmÞ

t de-
clines. Estimates for themiscellaneous category are generally smaller and
less robust.
Our results indicate that movements in demand, proxied by the bid-to-

cover ratio, are a key determinant of DðmÞ
t . Furthermore, we observe that

the demand from institutional investors is important in accounting for
variation in DðmÞ

t . We stress that our identifying assumption relies on ob-
serving only the changes in yields immediately following the close and re-
lease of auction results. Our empirical approach does not require a mea-
sure of the unanticipated movement in quantity demanded. Hence, our
empirical analysis in the remainder of the paper relies on only our con-
structed measure DðmÞ

t .

D. Comovement across Markets

We now turn to analyzing how our demand shocks for Treasuries prop-
agate across other financial markets. We measure the impact of de-
mand shocks on other assets by estimating univariate regressions of
the form

yt 5 g 1 fDt 1 ut , (3)

where yt is the change in the price or yield of some asset on auction date
t and Dt is our auction demand shock. We pool across all auction maturi-
ties to simplify presentation, but our results are robust to estimating equa-
tion (3) separately by maturity groups.
Where available, we use intraday changes measured in the same win-

dow as our shocks. We also examine daily changes, both because of data
limitations for some series and because daily changes may pick up re-
sponses that do not occur immediately. A strong relationship between
Dt and yt indicates either that Dt and yt have a common determinant
(e.g., changes in inflation expectations alter the behavior of bids in
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Treasury auctions and change prices of inflation swaps) or that there is a
propagation channel fromDt to yt (e.g., higher revealed demand for Trea-
suries results in repricing of other debt securities).
Panel A of table 3 reports results for debt markets. The dependent var-

iable in the first row is the intraday change in the price (comoves nega-
tively with the yield) of the Exchange Traded Fund (ETF) LQD, the
iShares iBoxx $ Investment Grade Corporate Bond tracking investment
grade corporate bonds. The estimated coefficient f̂ is interpreted as
the impact in log points of a 1 basis point increase in Dt. We observe a
strong reaction to the Treasury demand shock, accounting formore than
50% of variation observed in corporate bond ETF prices during the short
windows around the close and release of the Treasury auction results. The
second row reports the results using HYG, the iShares iBoxx $ High Yield
Corporate Bond ETF tracking high-yield corporate bonds. Although the
sign of the estimated coefficient is as expected, the pass-through from
our demand shocks to high-yield corporate bonds is weaker than that of
investment grade bonds. The estimated coefficient is not statistically signif-
icant, and the magnitude is smaller than for investment grade debt by a
factor of 10. Moreover, the R2 is much lower, suggesting that our demand
shocks account for only 1% of the observed variation in high-yield corpo-
rate bond ETF prices during these intraday periods. The next two rows
examine pass-through to mortgage rates, as measured by the ETFs MBB
and VMBS (from iShares and Vanguard, respectively; both ETFs track
investment-grade mortgage-backed pass-through securities guaranteed by
US government agencies). Similar to our findings for investment-grade
corporate debt, we find economically large and statistically significant pass-
through of demand shocks to mortgage borrowing rates. We also find rel-
atively high R2s of 34% and 13%, respectively.
The next rows repeat the above analysis using daily measures of corpo-

rate bond yields, as measured by Moody’s Aaa, Moody’s Baa, and Bank of
America’s C corporate yield indexes. Consistent with the intraday results,
our demand shocks have a strong effect on safe (Aaa) corporate bonds.
Moreover, the pass-through of our demand shocks to corporate bond yields
is nearly one-to-one. However, using daily rather than intraday changes
as the dependent variable leads to a decline in R2, which underscores the
benefits of using intraday data. While our demand shocks still have large
effects on moderately safe debt (Baa), there appears to be much smaller
transmission to highly risky corporate debt (C), consistent with our intraday
findings.
Secondary market yields react not only strongly but also persistently.

Figure 3 plots the contemporaneous reaction of 10-year Treasury spot
rates (A) and the Aaa corporate bond yields (B) to our shocks Dt as well
as the reactions up to 60 days in the future. The reaction remains strongly
statistically significant over 3 weeks later, while the point estimate is quite
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stable even 2 months later. To provide a perspective on the magnitude
of this persistence, in figure 3 we also plot the change in yields following
the QE1 announcement on March 18, 2009 (normalized such that the
change on impact is equal to 1). Consistent with Wright (2012) and

TABLE 3
Asset Price Reactions to Demand Shocks

Asset Type
Estimate

(1)
Standard Error

(2)
Observations

(3)
R 2

(4)
Sample
(5)

A. Corporate and Private Debt

LQD 23.93*** (.15) 830 .59 2002–17
HYG 2.34 (.30) 678 .01 2007–17
MBB 21.42*** (.18) 662 .34 2007–17
VMBS 21.46*** (.33) 371 .13 2009–17
Corporate Aaaa .94*** (.10) 1,040 .14 1995–2017
Corporate Baaa .96*** (.10) 1,040 .15 1995–2017
Corporate Ca .23 (.39) 973 .00 1997–2017

B. Equities

SPY 2.23 (.52) 1,033 .00 1995–2017
IWM .18 (.58) 876 .00 2000–2017
S&P 500a 3.61 (2.74) 974 .00 1995–2016
Russell 2000a 6.26* (3.25) 974 .01 1995–2016

C. Swaps, Commodities, and Spreads

GLD 21.16*** (.36) 775 .02 2004–17
GSCIa 21.20 (2.74) 974 .00 1995–2016
10-year inflation swapa .02 (.08) 724 .00 2004–16
2-year inflation swapa .04 (.17) 724 .00 2004–16
LIBOR-OISa .03 (.04) 737 .00 2003–16
Auto CDSa 2.60 (2.65) 733 .00 2004–16
Bank CDSa 2.23 (.16) 733 .01 2004–16
VIXa 23.82 (3.37) 1,040 .00 1995–2017

D. Federal Funds Futures

1-month aheada .03 (.02) 1,040 .00 1995–2017
2-month/1-month slopea .00 (.01) 1,040 .00 1995–2017

Note.—The table shows regressions of asset price changes on demand shocks Dt

(pooled across maturities). Intraday changes are from ETFs that track securities or in-
dexes: LQD (investment grade corporate debt); HYG (high-yield corporate debt); MBB
and VMBS (mortgage indexes); SPY (S&P 500); IWM (Russell 2000); GLD (gold bullion).
Daily series: Aaa, Baa, C (Moody’s and Bank of America corporate debt yield indexes); S&P
500, Russell 2000 (equity indexes); GSCI (S&P Total Commodity Index); 10- and 2-year in-
flation swaps; auto and bank credit default swap indexes; LIBOR-OIS (3-month USD
LIBOR–overnight index swap spread); VIX (implied volatility index); Federal funds fu-
tures (h-month ahead continuous contracts). Newey-West (nine lags) standard errors are
in parentheses. All regressions are estimated using ordinary least squares. We report very
similar instrumental variable estimates (using changes in the bid-to-cover ratio as instru-
ments) in table B1, available online.

a Denotes daily series; otherwise, intraday changes are measured over the same window
as auction demand shocks.
* Statistically significant at the 10% level.
*** Statistically significant at the 1% level.
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FIG. 3.—Long-difference response to demand shocks. The figure shows responses of
10-year Treasury spot rates (A) and Moody’s Aaa yields (B) to demand shocks Dt (pooled
across maturities). We compute long-difference regressions: on an auction date t, the de-
pendent variable is yt1h 2 yt21, the change h days after the auction relative to the day before
the auction. The solid line plots the coefficients from regressions for h 5 0, ::: , 60; the
shaded region and thin dashed lines correspond to 1 and 2 standard error (Newey-West,
nine lags) confidence bands. The thick dashed line compares the long-horizon effects
of the March 2009 QE1 FOMC announcement (normalized so that the impact on an-
nouncement is 1).



Greenlaw et al. (2018), yields had returned to roughly their starting point
within a few months after QE1.
One may be concerned that these reactions in the bond market are

driven by some omitted factor rather than idiosyncratic changes in insti-
tutional investors’ demand for Treasuries. Our high-frequency identifica-
tion goes a long way toward assuaging this concern, but it is still possible
that our demand shocks reflect systematic changes in bidders’ expecta-
tions of macroeconomic or financial fundamentals. This is an issue for
our interpretation if two conditions hold: (1) this information was not al-
ready reflected in market prices and instead is revealed only at the auc-
tion; (2) the market as a whole updates their beliefs about fundamentals
by observing the results of the auction. If this information factor drives
the bond market reactions we observe, we should find strong comove-
ment between Dt and indicators capturing beliefs about current or future
states of the economy and financial markets. The information factor can
take any number of forms, so it is difficult to conclusively rule out this
channel; we focus on a battery of key indicators to assess the quantitative
significance of this alternative explanation.
Panel B of table 3 reports estimates for the response of equities to our

demand shocks. Rows 1 and 2 report the results for the intraday change
in ETFs tracking the Standard and Poor’s (S&P) 500 and the Russell 2000
indexes. Rows 3 and 4 are for the daily changes in these indexes. Although
the estimated slope is generally positive, the estimate is typically insignifi-
cant. Moreover, the quantitative importance is small, as the auction de-
mand shocks account for a trivial share of variation in equities. Thus, there
is little evidence on average for a common factor driving Treasury and eq-
uity prices during small windows around the release of auction results or
for strong propagation of our demand shocks to equity prices.
Panel C of table 3 presents results for a wider array of assets. The depen-

dent variable in row 1 is the intraday change in the ETF GLD, which
tracks the price of gold bullion. Row 2 reports results for the daily change
in the S&PTotal Commodity Index. For the Commodity Index, we do not
find a significant correlation with Dt. For gold, while the relationship is
statistically significant, the R2 is very low. Rows 3 and 4 use the daily change
in inflation expectations implied by inflation swaps at the 10- and 2-year
horizons.Ourdemand shocks arenot associatedwith a significant comove-
ment in inflation expectations. Row 5 uses the daily change in the 3-month
USD London Interbank Offered Rank (LIBOR)–overnight index swap
spread (a common measure of credit risk in the banking sector). Rows 6
and 7 use daily changes in two credit default swap (CDS) indexes from
Credit Market Analysis that track the automotive industry (a highly cyclical
industry) and banks (a proxy for the financial sector). These three mea-
sures proxy for expectations about future output and market conditions.
Our demand shocks have no tangible relationship with these measures,
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consistent with our interpretation that the shocks do not capture superior
information of Treasury auction bidders about future recessions and the
like. Finally, row 8 documents thatDt shocks are not associatedwith theVol-
atility Index (VIX; ameasure of market perceptions of future volatility). In
short, these null results suggest that our demand shocks are not driven
by changes in expectations regarding inflation, output, liquidity, default
risk, or volatility.
As a final test, panel D of table 3 reports results with expected federal

funds rates, which are derived from federal funds futures contracts. We
view this as a catchall test of the information factor story: if our demand
shocks reflect changes in market expectations of fundamentals, then the
market should also expect a Fed response (to the extent that these fun-
damentals matter for the macroeconomy). We find that our demand
shocks are not associated with changes in expected federal funds rates:
the estimated coefficients on our demand shocks are very close to zero
in these specifications, and demand shocks explain virtually none of
the variation in federal funds futures in our sample.9

E. Localization Hypothesis

The results of tables 2 and 3 allow for some broad observations. First,
given our high-frequency approach and the institutional structure of Trea-
sury auctions, our constructed shocks are likely driven by only new infor-
mation regarding the demand side of the market. Second, these shifts
are largely driven by shifts in the demand arising from institutional inves-
tors. Third, these demand shocks from the primary market for Treasuries
propagate to private borrowing rates. We do not observe the underlying
sources of demand shocks, and indeed it is likely driven by a host of factors,
including shifts in a given investor’s idiosyncratic beliefs about the macro-
economy. However, these demand shifts are not driven by systematic or
market-wide shifts in macroeconomic expectations (e.g., flight to quality
or inflation expectations) that may move demand for Treasuries at all
maturities.
We now turn to testing the key predictions of preferred habitat theory,

first discussed in Modigliani and Sutch (1966). Preferred habitat theory
posits that certain investor clienteles specialize in bonds of specific
maturities; idiosyncratic positive (negative) shocks to their demand leads
to decreases (increases) in bond yields. This prediction contrasts with
the neutrality result of standard theories and the expectations hypothesis:
holding fixed the expected path of short rates, idiosyncratic demand

9 We plot rolling regressions for select asset prices in fig. B9. Figure B10 plots rolling re-
gressions for h-month ahead federal funds futures h up to 12 months.
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shocks for specific bonds should have no effect on yields. Our results in
table 2 are consistent with the basic preferred habitat theory (and are in-
consistent with the neutrality result of the expectations hypothesis): in-
creases in idiosyncratic demand (proxied by the bid-to-cover ratio at a
given auction) imply decreases in yields following the close of a given
auction.
However, a naive preferred habitat view where yields for a given bond

are determined solely by idiosyncratic demand shocks is unrealistic, as
this would imply large arbitrage profits to be made by term structure
arbitrageurs. Thus, modern preferred habitat theory (Vayanos and Vila
2021) formalizes the interaction between such arbitrageurs and pre-
ferred habitat investors. One of the characteristic predictions of modern
preferred habitat theory is the localization hypothesis. When arbitrageur
risk-bearing capacity is high, habitat demand shocks have global effects
on the yield curve. That is, the relative response of the interest rates
across the yield curve does not depend on where in maturity space the
demand shock occurs. However, as arbitrageur risk-bearing capacity de-
clines, the spillovers of demand shocks become more localized. That is,
the relative response of interest rates becomes more concentrated on
parts of the yield curve that are closer in maturity space to where the de-
mand shock occurs.
Intuitively, as risk-bearing capacity falls, term structure arbitrageurs

find it more and more costly to integrate the markets for bonds of differ-
entmaturities. Thus, demand shocks in onematurity segment of the yield
curve will have relatively larger effects for bonds with similarmaturities to
those directly affected by the shift in demand. Yields for maturities that
are far removed from those of the bonds directly affected by the demand
shock will instead exhibit relatively small movements.
Thus, testing the localization hypothesis requires empirical measures

of the conditional response of yields to demand shifts for short- and
long-maturity Treasuries, holding all other risk factors constant. Our
high-frequency identification strategy is designed to isolate the reactions
of the yield curve to Treasury demand shocks alone, effectively ruling out
any other shocks during these small windows around auctions. This
insight allows us to arrive at a simple regression specification that can
test the localization hypothesis using only high-frequency changes in
yields around auctions DðtÞ

t 5 y
ðtÞ,post
t 2 y

ðtÞ,pre
t :

DðtÞ
t 5 aðtÞ 1 gðtÞ

s Iðmt 5 shortÞDðt*Þ
t 1 g

ðtÞ
‘ Iðmt 5 long ÞDðt*Þ

t 1 εðtÞt , (4)

where Iðmt 5 shortÞ and Iðmt 5 long Þ are indicator variables equal to 1 if
there is an auction of short-maturity and long-maturity bonds on date t,
respectively. We estimate equation (4) for all maturities t, holding some
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baseline maturity t* fixed. Coefficients ĝðtÞ
s and ĝ

ðtÞ
‘ measure the relative

effect of demand shocks for short-maturity and long-maturity auctions re-
spectively. Now we can restate the localization hypothesis formally as a
function of the coefficients gðtÞ

s , gðtÞ
‘ as follows: (1) when risk-bearing ca-

pacity is high, jgðtÞ
s 2 g

ðtÞ
‘ j→ 0 for all maturities t; (2) when risk-bearing

capacity is low, then g
ðtÞ
s > g

ðtÞ
‘ if t < t* and g

ðtÞ
s < g

ðtÞ
‘ if t > t*.

F. Empirical Localization Results

To test the state-dependent localization hypothesis, we estimate specifica-
tion (4) separately for two subsamples: a noncrisis period (when risk-
bearing capacity is high) and a crisis period (when risk-bearing capacity
is low). Testing for the equality of coefficients ĝðtÞ

s and ĝ
ðtÞ
‘ in each sub-

sample shows whether demand shocks have more localized effects when
risk-bearing capacity is low. In our baseline estimates, we take the crisis
period to be 2008–12. We divide the auctions into short maturity (matu-
rity of 5 years or less) and long maturity (maturity of 7 years or greater).
The results are robust to alternative choices.
Since we construct DðtÞ

t from secondary market yields, we do not have
measures for all maturities t at all times. Our approach is to run rolling
regressions (across maturities), including yields for maturities within
±2 years for eachmaturity t ≤ 20 years and within ±4 years for eachmatu-
rity t > 20 year. Given that the choice of benchmark maturity t* is arbi-
trary, we set t* 5 3, with an eye toward applying our results toQE in order
to focus on the differential effects of intermediate and long-maturity
yields.
Figure 4A plots the estimates of ĝðtÞ

s and ĝ
ðtÞ
‘ for the noncrisis sample.

The estimated responses follow a similar hump-shaped pattern, peaking
at intermediate maturities (around roughly 5–7 years) and then declin-
ing and stabilizing for longer-term maturities (with a possible slight up-
tick for very long [201 years] maturities). In general, we cannot reject
equality of ĝðtÞ

s and ĝ
ðtÞ
‘ .

When we estimate specification (4) on the crisis sample, we observe a
strikingly different pattern (fig. 4B). In response to shocks in demand
for short- and long-maturity Treasuries, both ĝ

ðtÞ
s and ĝ

ðtÞ
‘ increase rapidly

for t < t*, with the ĝðtÞ
s estimates increasing somewhat more quickly than

ĝ
ðtÞ
‘ . Once we move to maturities greater than t*, the estimates quickly di-

verge. Specifically, in response to shocks in demand for short-maturity
Treasuries, the yields for maturities greater than t* fall relative to the
yield response for t* (as shownby the estimates of ĝðtÞ

s ).On the otherhand,
in response shocks in demand for long-maturity Treasuries, yields for
maturities t > t* continue to increase relative to the benchmark maturity
t* (as shown by the estimates of ĝðtÞ

‘ ). For maturities of 20 to 30 years, the
relative response of yields to long-maturity demand shocks (ĝðtÞ

‘ ) is over
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FIG. 4.—Localization regression results. The figure shows plots of the regression coeffi-
cients from regression equation (4). A compares estimates from short- and long-maturity
auctions during noncrisis periods, and B compares these estimates during crisis periods,
with 2 standard error (Newey-West, nine lags) confidence intervals included. Figure B11
reports p -values for the equality of estimates.



twice as large as the response of yields to short-maturity demand shocks
(ĝðtÞ

s ). We can strongly (at the 0.1% level) reject the null of ĝðtÞ
s and ĝ

ðtÞ
‘ be-

ing equal.
These results are consistent with the key predictions of preferred hab-

itat theory: during normal periods when financial risk-bearing capacity
is high, demand shocks for short- and long-maturity securities have rela-
tively similar impacts on the yield curve. During periods of financial dis-
tress when risk-bearing capacity is low, the impacts aremore localized: the
impact of short-maturity demand shocks are largest for short maturities,
while the impact of long-maturity demand shocks peaks at the long end
of the term structure. These results provide support for the view that dur-
ing financial crises, arbitrageurs are less willing or able to integrate bond
markets.
The localization results are robust to a variety of alternative assump-

tions. In the interest of space, we provide summaries for a few key robust-
ness specifications in this section. First, we explore the sensitivity of our
results to using alternative measures of financial distress. Specifically,
we consider two alternatives: (1) an aggregate intermediary capital ratio,
a market-based measure of financial distress (low intermediary capital
ratios are associated with lower risk-bearing capacity) described in He,
Kelly, and Manela (2016); and (2) a narrative-based measure of financial
crisis (higher values of the crisis indicator are associated with lower risk-
bearing capacity) from Romer and Romer (2017). Both of these alterna-
tives generate results similar to our baseline findings (see figs. B12–B16).
Second, our results are robust to using different cutoffs for separating auc-
tions into short and long maturities. For example, when we use 10 years
(rather than 7 years in the baseline) as the cutoff for long-maturity auc-
tions, the results (fig. B17) still strongly support the localization hypoth-
esis and, if anything, the point estimates for the noncrisis period are even
more similar than in our baseline specification. Third, as we discussed
above, the choice of the benchmark maturity t* is arbitrary in our frame-
work. To verify that this choice is indeed immaterial for our results, we
experiment with values other than t* 5 3 and find similar results (e.g.,
fig. B18 reports estimates for t* 5 6). Fourth, our results are nearly iden-
tical when dropping auctions that occurred during the weeks of QE an-
nouncements (fig. B19).
Note that specification (4) does not require us to observe the underly-

ing shock to demand quantity but instead relies on only the change in
yields conditional on such (unobserved) changes in demand. However,
the change in the bid-to-cover ratio is a proxy for demand shifts. Al-
though we do not have a high-frequency market-based measure of the
expected bid-to-cover ratio before and after an auction, we nevertheless
considered an alternative regression specification to test the localization
hypothesis:
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DðtÞ
t 5 aðtÞ 1 nðtÞs Iðmt 5 shortÞ~bt 1 n

ðtÞ
‘ Iðmt 5 long Þ~bt 1 εðtÞt , (5)

where ~bt is the change in the bid-to-cover ratio following an auction at
date t (as in table 2). Figure 5 reports the results (after flipping the sign
of the coefficients for comparability with our baseline specification). Un-
like specification (4), the estimates n̂ðtÞs , n̂ðtÞ‘ measure the absolute response
of the yield curve to shifts in demand (proxies) as opposed to the relative
response. Hence, the formal test of the localization hypothesis is not
as straightforward. With this caveat, we see clear patterns of localization
in the crisis estimates but little evidence of localization in the noncrisis
estimates. In the noncrisis subsample estimates (fig. 5A), the response
to both short- and long-maturity demand follows a similar hump-shaped
pattern: the response is increasing from short to intermediate maturities,
peaking around t 5 5 to t 5 10 before declining (though there is some
evidence that long demand shocks have larger effects on very long-
maturity yields). On the other hand, the estimates from the crisis sub-
sample (fig. 5B) exhibit significant differences across short and long es-
timates: the response to short demand shocks remains hump shaped but
peaks for short maturities before quickly declining. Conversely, the re-
sponse to long demand shocks increases almost without fail as the matu-
rity increases, peaking at very long maturities.10

We additionally explore state dependence in the pass-through of Trea-
sury demand shocks to private borrowing rates. Although preferred hab-
itat models typically feature only risk-free bonds, the logic of the locali-
zation hypothesis also suggests that the pass-through to risky assets of
Treasury demand shocks should lessen when risk-bearing capacity is low.
Panel A of table 4 estimates a version of equation (4) where we regress
the intraday change of various ETF prices onDðt*Þ

t , interacted with whether
the auction took place during the crisis period. For very safe or very risky
corporate borrowing (LQDandHYG in cols. 1 and 2, respectively), we find
little evidence of localization. Although the sign of the crisis interaction
coefficient in both cases is positive, it is not statistically significant. On
the other hand, mortgage borrowing rates (MBB and VMBS in cols. 3 and
4, respectively) seem to exhibit substantial localization. In both cases, the
interaction coefficient is positive, economically large compared with the
noncrisis coefficient, and highly statistically significant. Next, we explore
the pass-through to equity indexes. For the S&P 500 (SPY; col. 5), we find
little evidence for localization; while for the Russell 2000 (IWM; col. 6),
there is some support for localization: the coefficient is positive in noncrisis

10 Figures B20 and B21 repeat the estimation of specification (5) but use the level of the
bid-to-cover ratio or the residuals of a univariate AR(4) model. Figures B22–B24 conduct
additional robustness exercises using measures of the bid-to-cover ratio only from indirect
bidders. In all cases, the patterns observed are very similar to our results in fig. 5.
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FIG. 5.—Alternative localization: bid-to-cover ratio. The figure shows estimates of the
alternative localization regression (5), using the change in the bid-to-cover ratio as a proxy
of structural demand shocks. We further flip the sign of the coefficients in order to make
the estimates more comparable to our baseline specification. A compares estimates from
short- and long-maturity auctions during noncrisis periods, and B compares these esti-
mates during crisis periods, with 2 standard error (Newey-West, nine lags) confidence in-
tervals included.



times, but the interaction coefficient suggests that during crisis times the
pass-through drops to zero. However, in both cases, the R2 is low.
Finally, we explore state- and maturity-dependent localization for safe

corporate borrowing rates. We estimate a version of equation (4) but use
intraday changes in various corporate bond ETFs as the dependent var-
iable interacted with both the regime (crisis/noncrisis) and maturity
(short/long) of the auction. We utilize two sets of ETFs: BSV, BIV, and
BLV from Vanguard and CSJ, CIU, and CLY from iShares. These ETFs
track investment-grade bonds with short, intermediate, and long maturi-
ties, respectively.11 The results for this exercise (panel B of table 4) are

11 The Vanguard ETFs were introduced in 2007 but include Treasuries in addition to cor-
porate bonds. The iShares ETFs include only corporate bonds but have shorter time series.

TABLE 4
Localization Regression Results, Private Borrowing

LQD
(1)

HYG
(2)

MBB
(3)

VMBS
(4)

SPY
(5)

IWM
(6)

A. Crisis Localization

Dðt*Þ
t 24.98*** 2.18 23.41*** 22.83*** 2.03 2.85***

(.58) (.56) (.41) (.42) (1.22) (1.02)
Crisis � Dðt*Þ

t .30 .19 1.80*** 4.51*** .97 22.64*
(.72) (.69) (.43) (1.58) (1.56) (1.42)

Observations 794 661 647 376 941 811
R 2 .40 .00 .35 .15 .01 .01
Sample 2002–17 2007–17 2007–17 2009–17 1995–2017 2001–17

B. Crisis and Maturity Localization

Dðt*Þ
t 21.54*** 25.20*** 28.74*** 2.84*** 22.98*** 24.32***

(.18) (.37) (.93) (.17) (.25) (1.24)
Long � Dðt*Þ

t 2.22 2.88 24.45* .23 2.58 24.37
(.38) (1.46) (2.31) (.28) (.62) (3.37)

Crisis � Dðt*Þ
t .19 .95 1.72 2.15 .79* 22.23

(.25) (.58) (1.36) (.30) (.46) (2.85)
Long � crisis � Dðt*Þ

t .04 22.72* 25.73* 2.11 2.54 221.22**
(.51) (1.61) (3.15) (.52) (.81) (10.82)

Observations 664 653 569 647 642 401
R 2 .36 .62 .38 .14 .28 .19
Sample 2007–17 2007–17 2007–17 2007–17 2007–17 2010–17

Note.—The table shows regressions of intraday changes in ETFs (proxying for various
private borrowing rates) on the intraday change in intermediate yields Dðt*Þ

t (as in fig. 4).
Panel A includes interactions with whether the auction took place in a noncrisis or crisis
period, while panel B additionally includes interactions with the maturity of the auction
(using the same definitions as in fig. 4). The ETFs used in panel A are the same as in table 3.
In panel B, the Vanguard ETFs BSV, BIV, and BLV track investment-grade bonds with short,
intermediate, and long maturities, respectively. The BlackRock iShares ETFs CSJ, CIU, and
CLY track investment-grade corporate bonds with short, intermediate, and longmaturities,
respectively. Newey-West (nine lags) standard errors are in parentheses.
* Statistically significant at the 10% level.
** Statistically significant at the 5% level.
*** Statistically significant at the 1% level.
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not directly comparable to our baseline Treasury results from figure 4 be-
cause the ETFs are measured as (log) price changes and because we do
not observe the entire term structure for corporate debt. Nevertheless,
the results are consistent with our findings in figure 4. The first row shows
that demand shocks in Treasury auctions also have large effects on corpo-
rate bond prices across the term structure. The second row shows that this
pass-through is similar for demand shocks originating in long-term auctions
in noncrisis times (with the one exception of the coefficient for BLV). The
third and fourth rows report the interaction coefficients for the crisis peri-
ods. The final row shows that the pass-through of demand shocks for long-
maturity Treasuries occurring during crisis periods has the same kind of
localization pattern as figure 4. The coefficient becomes monotonically
more negative as we move from short-maturity to long-maturity bond
ETFs. In particular, the coefficient for the long-maturity ETFs is negative
and statistically significant.

IV. A New Keynesian Preferred Habitat Model

The results of section III show that our shock series offer useful variation to
study empirically the financial effects of Treasury demand shocks. How-
ever, our end goal is to make sense of the transmission of QE both to asset
prices and to the broader macroeconomy. Thus, in order to make more
progress understanding shock transmission along these dimensions, we
need to develop a theoretical framework with meaningful interactions be-
tween financial markets and the macroeconomy. This will allow us to be
precise about the transmission mechanisms of demand shocks as well
as help us extrapolate from private shocks observed at auctions to large-
scale asset purchases (or sales). Informed by our empirical findings in sec-
tion III, this section develops such a model.

A. Overview: Agents and Financial Assets

The financial block of our model builds on Vayanos and Vila (2021), ex-
tended to allow for both riskless and risky assets. Formally, we assume
two sets of assets: riskless and risky zero coupon bonds with maturity
t ∈ ð0, T Þ. A t-maturity riskless bond has price P ðtÞ

t and pays $1 atmaturity
with certainty in period t 1 t. A risky t-maturity bond has price ~P ðtÞ

t and
instead paysDt1t ; edt1t atmaturity in period t 1 t, whereDt is a stochastic
process. We will assume that both sets of assets are in zero net supply, but
for completeness we denote the supply of assets by S ðtÞ

t and ~S ðtÞ
t , respectively.

As in Vayanos and Vila (2021), financial assets are traded between
two sets of investors: arbitrageurs and preferred habitat funds. Crucially,
there exist clientele investors who have idiosyncratic demand (preferred
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habitat) for specific assets and maturities. For example, pension funds
can have a preference for long-maturity assets to better match the matu-
rity structure of pension liabilities. The other side of the market are risk-
averse arbitrageurs, such as hedge funds and dealers, who smooth out
these demand shocks.
Themacro side of ourmodel is largely built on a standard New Keynes-

ian framework. A representative household consumes and supplies labor
to firms producing differentiated goods while facing pricing frictions.
Equilibrium aggregate dynamics will depend on two familiar equations:
an investment-saving (IS) curve that determines the dynamics of the
output gap xt and a Phillips curve that determines the dynamics of infla-
tion pt. The links between the financial and the macroeconomic blocks
of our model are twofold. First, the central bank sets the policy rate it
in reaction to aggregate fluctuations. In equilibrium, it will be the return
on a riskless bond asmaturity t→ 0; therefore, aggregate fluctuations will
result in changes in asset prices. Second, we depart from the usual New
Keynesian setup and assume that households cannot access financial
markets directly but instead must borrow through the preferred habitat
funds. Through the household Euler equation, output in equilibrium
will depend on a weighted average of the returns on both short- and
long-term assets rather than only on the policy rate. Therefore, asset price
movements will lead to changes inmacroeconomic conditions.Ourmodel
formalizes this intuition and characterizes the general equilibrium solu-
tion. We stress that our aim is to develop a tractable model and discuss
the simplifying assumptions necessary for our model.
Households.—The representative household chooses a consumption

bundle Ct and labor supply Nt given nominal wealth At in order to maxi-
mize lifetime discounted utility. The household faces a nominal wageW t

and aggregate price index Pt. Our point of departure from a textbook
New Keynesian model is that households can invest with only the pre-
ferred habitat funds and allocate a fixed fraction of their wealth across
these funds. The household problem is given by

    max E0

ð∞
0

e2rtΨt

C 12ς
t

1 2 ς
2

N 11f
t

1 1 f

� �
dt, subject to (6)

dAt 5 ½W tNt 2 PtCt �dt 1 At

ðT
0

�
hðtÞ dP

ðtÞ
t

P ðtÞ
t

1 ~hðtÞ d
~P ðtÞ
t

~P ðtÞ
t

�
dt 1 dFt , (7)

and A0 given. The parameter f is the Frisch elasticity of labor supply, and
the parameter r is the household discount factor. We introduce aggre-
gate demand shocks through discount rate shocks Ψt. The term dFt
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captures all (flow) nominal transfers to the household. Households
therefore borrow or lend their wealth At at an effective borrowing rate
(rather than the short-term policy rate), given by the integral term in
the household budget constraint. The weight functions satisfy

Ð T
0 ðhðtÞ 1

~hðtÞÞdt 5 1. Thus, household borrowing depends on a weighted average
of the returns across the term structure and asset types. Denote the drift
of the effective borrowing rate by

r̂t ; Et

ðT
0

hðtÞ dP
ðtÞ
t

P ðtÞ
t

1 ~hðtÞ d
~P ðtÞ
t

~P ðtÞ
t

 !
dt, (8)

which is endogenous but taken as given by households.
We think of the weighting functions h(t), ~hðtÞ as capturing a type of

preferred habitat for households (e.g., due to demographics, such as
age) without explicitly introducing heterogeneous households. This also
captures imperfect access to financial markets, as households typically do
not directly buy and sell financial assets, such as corporate bonds; instead,
investments are done through pension funds and mutual funds, which
tend to allocate their portfolio using fixed weights and rebalance slug-
gishly (e.g., Koijen and Yogo 2019, 2022; Bretscher et al. 2022; Peng and
Wang 2022).
To be clear, these weighting functions abstract from many important

features of household finance, such as borrowing constraints and hetero-
geneity of households as well as financial intermediation that offers a va-
riety of products ranging from mortgages to credit card debt (for recent
surveys, see, e.g., Zinman 2015; Gomes, Haliassos, and Ramadorai 2021).
This creates some distance between the model and the data. For exam-
ple, QE can change access to credit at different maturities by affecting
banks’ balance sheets, inducing endogenous changes in the weighting
functions h(t) and ~hðtÞ (e.g., Rodnyansky and Darmouni 2017; Di Mag-
gio, Kermani, and Palmer 2020). In a similar spirit, borrowing constraints
and household heterogeneity call for more cross-sectional and time se-
ries variation in h(t) and ~hðtÞ (e.g., Cui and Sterk 2021).
Our key assumption that we can take the weighting functions as model

primitives is strong. However, this assumption permits a tractable solu-
tion and keeps the macroeconomic dynamics as close as possible to a
standard New Keynesian model while still allowing fluctuations in long-
term borrowing rates to affect household decisions. Enriching themodel
with elements necessary to capture additional financial complexities is a
fruitful avenue for future research.
Firms.—The production block of the model is standard. Intermediate

goods are produced by monopolistically competitive firms indexed by
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j ∈ ½0, 1�. Each firm hires workers and produces using linear technology
Yj,t 5 Nj ,t . Firms face Rotemberg pricing frictions when choosing prices
and must pay a cost Θðpj ,tÞ ; ðv=2Þp2

j ,tPtYt , where dPj ,t=Pj ,t 5 pj ,t  dt is the
inflation rate of firm j. Firms are owned by households and hence max-
imize expected real profits discounted using the household real stochas-
tic discount factor e2rtQt . The firm problem is therefore given by

max E0

ð∞
0

e2rtQt

Πj ,t

Pt

 dt, where Πj ,t 5 Pj,tYj ,t 2 W tNj ,t 2 Θðpj ,tÞ: (9)

Intermediate goods are sold to competitive final goods producers with
time-varying demand elasticity εt. This implies the usual demand and
price index for differentiated goods (see, e.g., Gali 2015)): Yj ,t 5
ðPj ,t=PtÞ2εt Yt , where the price index Pt 5 ðÐ 10 P 12εt

j,t Þ1=ð12εtÞ.
Arbitrageurs.—Arbitrageurs have mean-variance preferences and allo-

cate their wealthWt to holdings X ðtÞ
t , ~X ðtÞ

t across t riskless and risky bonds,
respectively. They solve

     max Et  dWt 2
a

2
Vart  dWt , subject to (10)

dWt 5 Wtit  dt 1
ðT
0

X ðtÞ
t

dP ðtÞ
t

P ðtÞ
t

2 it  dt

 !
1 ~X ðtÞ

t

d~P ðtÞ
t

~P ðtÞ
t

2 it  dt

 !
 dt, (11)

where the parameter a governs the risk-return trade-off that arbitrageurs
face. This parameter can be taken literally as a risk aversion parameter
or, more generally, can be thought of as a proxy for factors that lead
to the imperfect risk-bearing capacity of arbitrageurs. Arbitrageurs trans-
fer all profits or losses to the household each period. Taking a as time
invariant is important for tractability; however, we might expect a to in-
crease in periods of financial distress (e.g., Kyle and Xiong 2001; He and
Krishnamurthy 2013). We analyze how the predictions of the model de-
pend on the risk-bearing capacity of arbitrageurs.
Preferred habitat funds.—On the other side of themarket is a continuum

of habitat investors, who specialize in (riskless and risky) bonds of specific
maturities. We follow Vayanos and Vila (2021) and assume that these in-
vestors respond to prices through the following demand curves:

Z ðtÞ
t 5 2aðtÞ log P ðtÞ

t 2 btðtÞ, ~Z ðtÞ
t 5 2~aðtÞ log ~P ðtÞ

t 2 ~btðtÞ: (12)

The functions a(t), ~aðtÞ are the semielasticities of a t-habitat investor’s
demand for riskless and risky assets, respectively. The time-varying de-
mand intercept is given by bt(t), ~btðtÞ, where we assume a factor structure
such that
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btðtÞ 5 o
K

k51

vkðtÞbk
t 2 zðtÞ, ~btðtÞ 5 o

~K

k51

~vkðtÞ~bk
t 2 ~zðtÞ: (13)

The functions vkðtÞ, ~vkðtÞ govern how demand factors bk
t , ~b

k
t lead to

changes in demand from t-habitat investors. In general, there are no re-
strictions on the dynamics of the demand factors (up to linearizing). For
our quantitative analysis, we assume that the habitat demand factors
are independent from one another but may respond to the short rate
(as in King 2019a). Hence, for each demand factor, we have

dbk
t 5 2 kkbb

k
t 1 fk

i,bitð Þ dt 1 jk
b dBbk ,t , (14)

where the parameters kkb, f
k
i,b, and jk

b govern themean reversion, response
to short rates, and volatility of each demand factor, respectively (and with
analogous parameterization and dynamics for demand factors ~bk

t ).
The t-maturity riskless and risky funds have wealthW ðtÞ

t and ~W ðtÞ
t . In or-

der to fund their positions in their respective asset classes, the fund re-
ceives investment from the household sector on the basis of the weights
h(t), ~hðtÞ. Any remaining wealth is invested at the short rate. The budget
constraint of a t-maturity riskless fund is therefore

dW ðtÞ
t 5 Z ðtÞ

t

dP ðtÞ
t

P ðtÞ
t

1 W ðtÞ
t 2 Z ðtÞ

t 1 hðtÞAt

� �
it  dt 2 hðtÞAt

dP ðtÞ
t

P ðtÞ ,

and the risky fund faces an analogous budget constraint. Each preferred
habitat fund also transfers profits or losses to the household each period.
Interest rate and payoff processes.—To close the model, we need to specify

how the instantaneous interest rate it and the payoff process dt are deter-
mined. We assume that the central bank sets the nominal interest rate it
according to the following policy rule:

dit 5 2kiðit 2 fppt 2 fxxt 2 i*Þdt 1 ji  dBi,t , (15)

where the response of the policy rate to inflation and the output gap
are governed by fp, fx, ki is a mean reversion parameter, and i* is the cen-
tral bank’s target policy rate. Note that if ki →∞, we recover a standard
Taylor rule.
Finally, because risky assets are in zero net supply (~S ðtÞ

t 5 0), they can
be interpreted as synthetic securities that are created by the financial
sector (since arbitrageurs and preferred habitat funds take nonzero po-
sitions in risky assets across all maturities). We assume that the payoff pro-
cesses for these synthetic securities evolves according to

ddt 5 2kd dt 2 wxxt 2 wppt 2 d*ð Þ dt 1 jd  dBd,t: (16)

This reduced-form approach to modeling payoffs of risky assets allows us
to capture salient features of how private borrowing rates fluctuate over
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the business cycle. The process is mean reverting (with inertia kd) and
may depend on movements in output and inflation through parameters
wx, wp (which are primitives of the model). Outside of the model, assets
besides financial institution securities influence the borrowing decisions
of the household sector. In reality, this also includes risky private bonds,
mortgage debt, equities, and a host of other assets. Rather than compli-
cate the model by specifying a corporate structure for firms, we collapse
all of these sources of payoff risk into a single process Dt ; edt , which we
allow to respond in a flexible manner to aggregate dynamics.12

B. Equilibrium

The household and firm problems are highly similar to a textbook New
Keynesian model; detailed derivations are in appendix C. The optimiz-
ing behavior of these agents and market clearing give rise to a Phillips
curve and IS curve for inflation and the output gap pt, xt, where the out-
put gap is the deviation of output from the natural level that would pre-
vail in the absence of nominal rigidities and fluctuations in desired mark-
ups (v 5 0, εt 5 �ε). The only modification to the standard (linearized)
New Keynesian dynamics is that the effective borrowing rate r̂t replaces
the policy rate it. We have

Etdpt 5 rpt 2 dxt 2 zp,tð Þdt, (17)

Etdxt 5 ς21 r̂t 2 pt 2 �r 2 zx,tð Þdt, (18)

where the model is linearized around a steady state with �p 5 �x 5 0. The
parameter dmeasures the aggregate degree of price rigidity, and �r is the
natural borrowing rate. The aggregate supply and demand shocks are as-
sumed to evolve according to

dzp,t 5 2kzpzp,t  dt 1 jzpdBzp,t , (19)

dzx,t 5 2kzx zx,t  dt 1 jzx  dBzx ,t : (20)

The parameters kzp , kzx govern the persistence in these processes, and the
terms Bzp,t, Bzx,t are standard independent Brownian motions, with respec-
tive volatility terms jzp, jzx.
We collect the state variables, jump variables, and Brownian terms into vec-

tors yt 5 ½ it dt ⋯ bk
t ⋯ �⊤, xt 5 ½ pt xt �⊤, and Bt 5 ½ Bi,t Bd,t ⋯ Bbk ,t ⋯ �⊤,

12 Our results are not sensitive to this precise microfoundation of the payoff process. We
could have chosen a formulation whereby the payoff process Dt captures claims on a por-
tion of firm profits not paid directly and immediately to households. Under the zero net
supply assumption and with the payoff process given by eq. (16), the macroeconomic dy-
namics of the model are identical. Although this formulation brings the interpretation of
Dt closer to corporate bonds, it does not explicitly model the financing frictions leading to
this distribution of profits (and our model does not feature firm investment).
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respectively. The following Lemma describes the aggregate dynamics of
the model, taking as given the effective borrowing rate. All proofs are in
appendix A.
Lemma 1 (Aggregate dynamics). Suppose that the effective borrow-

ing rate drift is given by

r̂t 5 Â⊤yt 1 Ĉ: (21)

Then the rational expectations equilibrium is given by

dyt 5 2Γ yt 2 �yð Þ dt 1 j dBt , (22)

xt 2 �x 5 Ω yt 2 �yð Þ, (23)

where the matrices G, Q are a function of the eigendecomposition of the
linearized dynamics of the model (and therefore functions of Â).
If Â 5 ei , the vector that “selects” the policy rate e⊤

i yt 5 it , then the ef-
fective borrowing rate responds one-for-one with the policy rate it and
the aggregate dynamics of the model reduce to a standard New Keynes-
ian model.13

Next, we turn to characterizing the behavior of asset prices. We focus
on a solution to themodel in which (log) asset prices are affine functions
of the state variables, given by (endogenous) coefficient functions:

2log P ðtÞ
t 5 AðtÞ⊤yt 1 CðtÞ,2log ~P ðtÞ

t 5 ~AðtÞ⊤yt 1 ~CðtÞ: (24)

Lemma 2 (Asset prices). Suppose that the state variables yt evolve ac-
cording to equation (22). Then the affine coefficients in equation (24)
are given by

AðtÞ 5 I 2 e2Mt½ �M21ei , ~AðtÞ 5 I 2 e2Mt½ �M21ei 2 e2Mted, (25)

where ei, ed are vectors such that e⊤
i yt 5 it and e⊤

d yt 5 dt . The matrix M
solves the fixed point problem:

M 5 Γ⊤ 2 a

ðT
0

2aðtÞAðtÞ 1 ΘðtÞ½ �AðtÞ⊤

1 2~aðtÞ~AðtÞ 1 ~ΘðtÞ� �
~AðtÞ⊤dtjj⊤,

(26)

where V(t), ~ΘðtÞ stack the habitat demand functions vkðtÞ, ~vkðtÞ into
vectors.
The matrix M can be thought of as the risk-adjusted dynamics of the

state. Note that when arbitrageurs are risk neutral (a 5 0), we have

13 In this case, the central bank can ensure determinacy when the response to inflation
fp > 1. However, in general Â ≠ ei and the determinacy conditions are more complicated.
In our quantitative exercises, we verify that these determinacy conditions are satisfied
numerically.
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M 5 Γ⊤. However, when a ≠ 0,M appears on both sides of equation (26)
(through the affine coefficients A(t), ~AðtÞ).
With the results in lemmas 1 and 2, we can characterize the equilib-

rium of the model.
Proposition 1 (Existence and uniqueness). An affine equilibrium is

one in which the state and jump variables evolve according to equa-
tions (22) and (23) and asset prices are determined by the solution to
the expressions (25) and (26). In this case, the effective borrowing rate
is given by equation (21), where Â solves the fixed point problem

Â 5 ei 1 Γ⊤ 2 Mð Þ
ðT
0

hðtÞAðtÞ 1 ~hðtÞ~AðtÞ� �
dt: (27)

In a neighborhood of risk neutrality (a ≈ 0), the equilibrium exists and
is (locally) unique.
Note that the dynamics matrix of the state G depends on the effective

borrowing rate coefficients Â, which itself is a function of the risk-
adjusted dynamics matrix M. Thus, equilibrium is determined as a fixed
point that produces asset price dynamics consistent with equilibrium dy-
namics of themacroeconomy and vice versa. In general, an affine equilib-
rium of this type may not exist, or there may be multiple solutions to this
fixed point problem. However, when a 5 0, the model reduces to a stan-
dard New Keynesian model. The result in proposition 1 shows that this
equilibrium persists and is locally unique as we depart from risk neutral-
ity. We use this insight in our numerical continuation solution algorithm,
described in appendix D.

C. Localization and the Channels of Quantitative Easing

Our model makes precise the channels through which QE may have fi-
nancial and macroeconomic effects. The immediate and direct effect
of a QE purchase shock is a reduction in the amount of assets held by
arbitrageurs through market clearing (a decline in X ðtÞ

t or ~X ðtÞ
t in eq. [11],

depending on the type of assets purchased during QE). If arbitrageurs
are risk neutral (a 5 0), we recover a typical neutrality result: QE changes
the arbitrageurs’ portfolio but not asset prices (and thus has no affect on
real activity).
On the otherhand,when arbitrageurs are risk averse (a > 0), the change

in arbitrageurs’ portfolio implies changes in risk exposure, which is priced.
We can broadly distinguish between three main sources of risk: duration
or short-rate risk (from fluctuations in it), payoff risk (from fluctuations
in dt), and habitat demand risk (from fluctuations in demand factors bk

t ).
By reducing arbitrageur exposure to these sources of risk, in equilibrium
QE reduces the risk compensation arbitrageurs require, which manifests
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as a decline in expected returns. As a result, the household effective bor-
rowing rate r̂t falls, which through the intertemporal decisions of the house-
hold leads to lower savings and a jump in consumption and, from the
pricing decisions of firms, leads to an increase in inflation.
However, the precise mapping from a QE shock (or private demand

shocks) to the repricing of risk depends qualitatively on the risk-bearing
capacity of arbitrageurs. Ourmodel helps clarify the intuition behind the
empirical localization results found in section III. Intuitively, when arbi-
trageurs are nearly risk neutral (a ≈ 0), macroeconomic fundamentals
affecting the path of the short rate (duration risk) are the dominant fac-
tor in determining the term structure of interest rates. Hence, when arbi-
trageurs hold bonds, short-rate fluctuations are their main source of risk.
Demand shocks that reallocate bonds away from arbitrageurs reduce
their exposure to short-rate risk and hence decrease the compensation
arbitrageurs require to hold bonds. Since all bonds are sensitive to
short-rate risk, any such demand shock will push down yields of all bonds.
Importantly, this mechanism is independent of the location (in maturity
space) of the demand shock.
As arbitrageur risk aversion increases (a > 0), habitat demand shocks

become more prominent as additional sources of risk. Arbitrageurs try
to limit their exposure to these sources of risk, leading to less propaga-
tion from the location of the demand shock to other parts of the term
structure. Arbitrageurs become less willing to integrate bond markets
across maturities, and hence the response of the yield curve becomes
more localized around the location (inmaturity space) of a given demand
shock.
We can now use the model to formalize the logic of the localization ef-

fects documented in section III. Take two demand factors: a short matu-
rity factor bs

t and a long maturity factor b‘
t with the same overall magni-

tude across maturities (
Ð T
0 v

sðtÞdt 5
Ð T
0 v

‘ðtÞdt), but the short factor is
more concentrated in bonds of shortmaturities relative to the long factor
(∃ t0 : vsðtÞ < v‘ðtÞ⟺t > t0). In this context, the localization hypothesis
involves the differential responses of the entire yield curve tomovements
in the short and long demand factors. We formally state a version of the
localization hypothesis:

if  a ≈ 0 :
 ∂yðtÞt =∂bs

t

∂yðt*Þt =∂bs
t

≈
∂yðtÞt =∂b‘

t

∂yðt*Þt =∂b‘
t

, (28)

if  a ≫ 0 : t > t* ⟺
∂yðtÞt =∂bs

t

∂yðt*Þt =∂bs
t

<
∂yðtÞt =∂b‘

t

∂yðt*Þt =∂b‘
t

, (29)

where t* is an arbitrary baselinematurity (and unrelated to t) and ∂yðtÞt =∂bk
t

is the response of t-maturity yields to the demand shock k ∈ fs, ‘g. When
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arbitrageur risk-bearing capacity is high (a ≈ 0), the relative response of
the yield curve is the same for both factors. On the other hand, when risk-
bearing capacity is low (a ≫ 0), then long demand shocks have relatively
larger effects on long-maturity yields and vice versa for short demand
shocks. These expression make statements about the movements of the
yield curve to short and long demand shocks relative to movements in
some fixed maturity t*.14 Thus, the model maps to our specification (4),
and the qualitative predictions of the model line up with our results. In
section IV.D, we move from the qualitative to quantitative features of the
model.

D. Model Calibration

To study the quantitative properties of the model, we need to pick func-
tional forms and assign values to parameters. First, we must choose func-
tional forms regarding the effective borrowing weights and the habitat
elasticity and demand functions. We assume similar exponential func-
tions as in Vayanos and Vila (2021):

habitat elasticity function: aðtÞ 5 a0 expð2a1tÞ, (30)

habitat demand functions: vkðtÞ 5 v0tðvk1Þ2 expð2vk1tÞ, (31)

effective borrowing weights: hðtÞ 5 h0th
2
1 expð2h1tÞ, (32)

with analogous functional forms for ~aðtÞ, ~vkðtÞ, ~hðtÞ (and ~h0 5 1 2 h0 so
that the weights sum to 1). Equation (30) implies that the habitat investor
elasticity with respect to (log) price is declining withmaturity and is single
peaked with respect to yields. Similarly, equations (31) and (32) imply
that the demand factor and borrowing weights are single-peaked func-
tions. In addition to improving numerical properties of the model, these
exponential functional forms allow someflexibility in capturing keymod-
eling features, such as demand shocks targeted in specific areas of matu-
rity space, without significantly increasing the dimensionality of the prob-
lem. The parameters a0, v0 govern the overall size of the habitat elasticity
and demand functions, while a1, v

k
1, h1 govern the shape as a function of

maturity: a lower value of these parameters implies that more of the
weight of these functions lies at longer maturities.
Next, to map the model to our empirical estimates in section III, we as-

sume that there are three demand factors, corresponding to short- and
long-maturity Treasury auctions, and a risky asset. We denote these demand
factors by bs

t , b
‘
t , and ~bt , respectively. In order to impose more discipline on

14 Appendix E discusses sufficient conditions and derives further localization predic-
tions of the model.
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the model, we assume that the habitat demand shocks are identical, except
for the shape of the demand factor functions vsðtÞ, v‘ðtÞ, and ~vðtÞ. Specifi-
cally, we set vs1 5 0:5 and v‘1 5 0:2 to match our regression analysis in sec-
tion III. These choices imply that the short factor is concentrated in short
maturities less than 5 years (and themean of vsðtÞ is 4 years), while the long
factor has more weight in intermediate and long maturities above 7 years
(and themean of v‘ðtÞ is 10 years).We set the parametera1 5 0:1 such that
the habitat elasticity with respect to yields ( ; t � aðtÞ) ismaximized for the
10-year maturity, since this is often taken as a key benchmark yield by inves-
tors.We further assume that the habitat demand and elasticity functions are
identical for Treasuries and risky assets: aðtÞ 5 ~aðtÞ and vsðtÞ 5 ~vðtÞ. Fi-
nally, we assume that the dynamics parameters kb, fi,b, jb for each demand
factor in equation (14) are identical.
An important input into our model is the effective borrowing rate

weights h(t), ~hðtÞ. If household borrowing responds only to movements
in the instantaneous short rate, then themacroeconomic dynamics of the
model are identical to a textbook New Keynesian model. Thus, the effec-
tive borrowing weights can be thought of broadly as capturing the sensi-
tivity of the macroeconomy to borrowing rates besides the federal funds
rate. For our baseline calibration, we assume that the effective borrowing
rate depends on only risky rate (h0 5 0 and hence hðtÞ 5 0 and only ~hðtÞ
is nonzero). Further, we set h1 5 2, such that ~hðtÞ peaks at 0.5 years and
has an average value of 1 year. Our baseline choice puts a heavy weight on
short and intermediate maturities because trading volume in debt mar-
kets is concentrated at shorter-term maturities. For instance, estimates
from the Securities Industry and Financial Markets Association (SIFMA)
show that over the past two decades, trading volume for Treasury securi-
ties with maturity of 3 years or less made up about 45% of total trading
volume on average (and this ratio was relatively stable, with a minimum
and maximum annual value of 41% and 52%, respectively). Even within
coupon-bearing securities (excluding T-bills), trading volume for Trea-
sury notes withmaturity of 3 years or less made up 33% of the trading vol-
ume in coupon-bearing Treasury notes and bonds. In comparison, trad-
ing volume for Treasury bonds with a maturity of greater than 11 years
made up only 8% of the trading volume in coupon-bearing Treasury notes
and bonds. Trading volume for corporate debt markets across maturities
is less readily available. However, comparing trading volume in corporate
bond markets and commercial paper markets (from SIFMA and the
Federal Reserve, respectively) further suggests an outsized role of short-
maturity rates. For instance, for 2020–2021 the trading volume in commer-
cial paper markets was on average 4 times that of trading volume in corpo-
rate debt markets (for securities with maturity of at least one year). In
short, our calibration implies that household borrowing is a function of
risky borrowing rates (rather than the policy rate), largely concentrated
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at short and intermediate maturities. We explore the sensitivity of our re-
sults to alternative calibrations below.
Finally, in order to reduce the number of parameters needed to be cal-

ibrated, we simplify and assume that the central bank responds to only
inflation (fx 5 0 in eq. [15]), and the payoff process responds to only
the output gap (wp 5 0 in eq. [16]). We explore sensitivity to these as-
sumptions below.
We jointly estimate the remaining parameters through a moment-

matching exercise.15 We target volatility and cross correlations of Trea-
sury and corporate yields yðtÞt , ~yðtÞt as well as inflation and the output gap
pt, xt.16 Specifically, we target the following set of moments: (1) the vola-
tility of 1-year Treasury yields, 1-year corporate-Treasury spreads, the out-
put gap, and inflation (in levels, 1-year changes, and 1-month changes);
(2) the correlation of inflation and 1-year Treasury yields, the correlation
of output gap and 1-year corporate Treasury spreads, and the correlation
of inflation and the output gap (in levels); (3) the volatility of the entire
term structure of Treasury yields (1-year changes and 1-month changes);
(4) the correlation of the entire term structure of Treasury yields and 1-
year Treasury yields (1-year changes and 1-month changes); and (5) the
localization regression coefficients from figure 4. Besides the localization
regression coefficients, the data are monthly. Inflation is defined as the
year-over-year log change in the Personal Consumption Expenditures
Price Index. The output gap is defined as the cyclical component of in-
dustrial production using a Hodrick-Prescott filter. Zero coupon Trea-
sury yields are from Gürkaynak, Sack, and Wright (2007). Zero coupon
corporate bond yields are from the Treasury’s High Quality Market
(HQM) Corporate Bond Yield Curve data. We utilize the HQM data be-
cause it is a long-running measure of the term structure of zero coupon
private borrowing rates that are important for macroeconomic activity;
however, these rates reflect relatively safe corporate rates (ratedAor above).
Besides the localization coefficients, moments are computed starting in

15 Collecting unknown parameters into a vector r, we estimate the model by choosing r̂ to
minimize the weighted sum of squares: ðLðrÞ 5 oN

n51wnðm̂n 2 mnðrÞÞ2Þ, where fm̂ngN
n51 are

empirical moments and fmnðrÞgN
n51 are model-implied counterparts as a function of r̂. The

terms fwngN
n51 are weights placed on each target moment. These weights are set to 1=N T

for moments that are a function of maturity, where N T is the number of maturities, and 1
otherwise, so that our estimates are not overly influencedbymaturity-basedmoments. Appen-
dix D derives the model-implied moments.

16 The habitat elasticity functions and demand functions enter the solution multiplica-
tively with risk aversion and demand shock volatility, so they are identified only up to a scal-
ing factor. If shocks to quantity demand for Treasuries and risky assets can be measured
directly across all periods (including outside auction times), one can separately identify
these parameters. Because such measures are not available, the literature (e.g., Vayanos
and Vila 2021) typically chooses some normalization, such as jb 5 1. In our auction data,
the bid-to-cover ratio captures this information partially; this information is not necessary
for our calibration strategy, but we utilize this information in our QE exercises.
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1986 (when 30-year yields are available in Gürkaynak, Sack, and Wright
2007).
By targeting the localization regression coefficients from figure 4, our

model is informed by our empirical localization results, which are well
suited to identify the preferred habitat parameters of our model. We al-
low only the habitat risk-adjusted parameters (a � a0, a � jb � v0, and
a � fi,b) to be different in crisis, which we target to match the crisis local-
ization regression coefficients from figure 4. All other parameters are as-
sumed to be the same across crisis and noncrisis periods. Given that the
number of observations in the noncrisis period is vastly larger than the
number of observations in the crisis period, we first estimate all of the pa-
rameters from the noncrisis sample.
The fit of the model is summarized in figure 6 (moments that depend

on maturity) and panel A of table 5 (additional moments). Panel B of ta-
ble 5 reports our baseline parameter values. Our parameterized model
not only picks up the qualitative features of the data but also is successful
at matching the data quantitatively. Besides matching a wide variety of
volatility and correlation moments across borrowing rates and aggregate
variables, the model localization coefficients are close to the data locali-
zation coefficients in crisis and noncrisis periods (fig. 6A–6D).17 Nonethe-
less, given the challenges associated with estimating dynamic stochastic
general equilibrium models, one should treat this parameterization with
caution, and we run extensive sensitivity analysis in section IV.H.

E. Response of the Yield Curve to QE1

To assess the contribution of preferred habitat theory to the observed
reaction of yields to QE, we feed a QE1 shock into our model, compute
predicted responses of yields at different maturities, and compare pre-
dictions to actual changes in yields. We focus on QE1 because it was argu-
ably the “cleanest”QE shock: there is a clear set of policy announcement
events, and the observed response to these events is unlikely to be
plagued by anticipation issues relative to later rounds of QE. But in order
to accurately capture the relevant features of QE1, we do not treat QE
as precisely equivalent to a habitat demand shock in our model. Besides

17 We also examine localization across asset classes. Figure B26 plots various measures of
risky borrowing rate localization in the model. We find evidence in the model of increased
maturity localization in crisis periods: the relative effects of our short and long riskless de-
mand shocks bðsÞ

t , bð‘Þ
t have larger differential effects on risky rates across maturities in the

model calibrated to the crisis period compared with the noncrisis period (consistent with
panel B of table 4). Additionally, we find that compared with the response of the riskless
yield curve, the pass-through of riskless demand shocks to risky borrowing rates decreases
in the crisis calibration (consistent with panel A of table 4). However, unlike our baseline
Treasury localization results, the mapping from our empirical results to the model is not as
precise, and so these results should be taken as qualitative.
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FIG. 6.—Model fit. A–D plot the model-implied and empirical coefficients from regres-
sion equation (4). A and B plot the coefficients from the model calibrated to noncrisis pe-
riods, while C and D plot the coefficients from the model calibrated to crisis periods. E–H
compare additional targeted volatility and correlation moments in the model (solid lines)
with the data (scatter points) as a function of maturity.



TABLE 5
Model Calibration and Targeted Moments

Target Moment/Parameter (1) (2)

A. Matched Moments

Data Model

jðyð1Þt Þ 1.993 1.978
jð~yð1Þt 2 yð1Þt Þ .542 .549
j(pt) .973 .882
j(xt) 1.992 1.996
jðΔyð1Þt Þ 1.423 1.376
jðΔð~yð1Þt 2 yð1Þt ÞÞ .615 .617
jðΔptÞ .900 .935
jðΔxtÞ 2.190 2.137
jðΔs y

ð1Þ
t Þ .272 .399

jðΔsð~yð1Þt 2 yð1Þt ÞÞ .258 .218
j(Δspt) .232 .362
j(Δsxt) .499 .745
rð~yð1Þt 2 yð1Þt , xtÞ 2.171 2.158
rðyð1Þt , ptÞ .549 .615
r(pt, xt) .268 .271

B. Calibrated Parameters

Value (Crisis) Description

ji 2.567 Monetary policy volatility
ki 1.082 Monetary policy inertia
jd 1.116 Risky payoff volatility
kd .879 Risky payoff inertia
jz,p 2.039 Cost-push shock volatility
kz,p .801 Cost-push shock inertia
jz,x 1.749 Aggregate demand shock volatility
kz,x .253 Aggregate demand shock inertia
fp 3.096 Inflation Taylor coefficient
wx .393 Risky payoff output coefficient
d .705 Nominal rigidity
r .04 Discount factor
ς21 1.00 Intertemporal elasticity
kb 1.367 Habitat demand inertia
a ⋅ a0 .008 (.018) Habitat elasticity size
a ⋅ jb ⋅ v0 2.509 (5.123) Habitat demand size
a ⋅ fi, b .491 (4.620) Habitat demand short rate response
vs1 .50 Short treasury factor maturity weight
v‘1 .20 Long treasury factor maturity weight
~v1 .50 Risky factor maturity weight
a1 .10 Habitat elasticity maturity weight

C. QE/QT Parameters

Value Description

v
QE
1 .35 QE1 maturity weight
kQE .20 QE1 inertia
v
QT
1 .50 QT maturity weight
kQT,A .20 QT inertia, active component



the obvious fact that QE1 was significantly larger than typical private de-
mand shocks, QE1 also occurred unexpectedly, and markets had differ-
ent expectations about the dynamic properties of QE1 compared with
typical private demand shocks. Moreover, QE1 simultaneously purchased
Treasuries and MBS, and the profile of maturities was different than in
auctions. Thus, in our model QE1 is not a simple rescaling of the habitat
demand shocks during auctions. We discuss in detail how we mimic the
actual QE1 shock in the model.
Persistence.—We assume that this shock was completely unexpected

(MIT shock) and that afterward markets expected purchases to be un-
wound slowly and deterministically:

dbQE
t 5 2kQEb

QE
t  dt: (33)

We set the inertia parameter kQE 5 0:2. This magnitude roughly implies
that markets expected the Fed to unwind its purchases somewhat faster
than holding to maturity (more precisely, the half-life of the purchases
is roughly 3.5 years). Ex post, theMBSholdings roughly followed this pro-
cess until the reintroduction ofMBS purchases duringQE3.On the other
hand, the Treasuries purchased as part of the Fed’s QE programs were
held on the balance sheet for a very long time, and holdings remained
elevated well beyond that implied by our parameterization. However, this
does not imply that markets expected this ex ante.18 We explore the sen-
sitivity of this assumption below.

TABLE 5 (Continued)

Target Moment/Parameter (1) (2)

kQT,P 2.25 QT inertia, passive component
gQT,A,P 1.75 QT passive component response

Note.—Panel A presents the targeted moments that are not a function of maturity that
we use to calibrate the model. The targeted moments are volatility and correlations across
short-term rates and macroeconomic variables. Δ denotes a 1-year change, while Δs denote
a 1-month change. j(⋅) denotes standard deviation (reported in percentage points), while
r(⋅, ⋅) denotes correlation. Panel B presents calibrated parameters used in our quantitative
exercises. Panel C reports the parameterization of our QE and QT shocks.

18 The actual purchases of MBS and Treasuries during QE1 were planned to take place
over the 6 months following the March 2009 announcement. The Federal Open Market
Committee (FOMC) statements during this time do not make any reference to selling
these securities off but state that the FOMC will “carefully monitor the size and composi-
tion of the Federal Reserve’s balance sheet in light of evolving financial and economic de-
velopments.” Eventually, the FOMC made clear their policy of Treasury reinvestment. For
instance, in Chairman Bernanke’s July 2010 report to Congress, he stated that “the pro-
ceeds from maturing Treasury securities are being reinvested in new issues of Treasury se-
curities with similar maturities.”
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Composition.—QE1 involved purchasing a total of roughly $1.25 trillion
MBS and $300 billion Treasuries, concentrated on intermediate and long-
term maturity purchases (over 5 years).19 Given this focus, we assume the
same functional form as in equation (31) for the QE demand function
vQEðtÞ and set vQE

1 5 0:35, such that the model-implied QE1 purchases
are of relatively long-term maturity but in between the maturities of the
preferred habitat short and long factor described above (hence the mean
of vQEðtÞ is roughly 6 years). These purchases are split up such that roughly
80% of QE1 purchases are risky assets in the model, while the remaining
20% are of safe bonds, in order to match the fraction of actual MBS and
Treasury purchases during QE1.
Size.—Matching the overall magnitude of QE1 requires a few addi-

tional steps. As discussed above, our calibration strategy does not sepa-
rately identify the size of preferred habitat demand shifts and arbitrageur
risk aversion. This allows us to compute the response of yields to a unit
demand shock ∂yðtÞt =∂bk

t for short- or long-term auctions. However, our
moment-matching exercise thus far provides no information about the
dollar magnitude of a unit demand shock in themodel, since we can only
estimate the product a � jb � v0. Ourmodel is meant to capture all the vol-
atility of demand shocks, not just those that occur during auctions. But by
utilizing additional information fromTreasury auctions, we can pin down
the dollar magnitude of demand shocks.
The results of our alternative localization specification in figure 5mea-

sures the response of the yield curve to a unit change in the bid-to-cover
ratio across short-term and long-term auctions and in normal versus crisis
times. During theQE1 period, a unit change in the bid-to-cover ratio cor-
responded to about $30 billion for long-term auctions, while short-term
auctions were 50% larger. Thus, we estimate this quantity of long-term
auctions (which we denote by ΔbðaucÞ

t ) by targeting the results of our alter-
native localization regression; results are in figure B25. Finally, since QE1
was roughly $1.5 trillion, we have that ΔbðQEÞ

t ≈ 50 � ΔbðaucÞ
t . To be clear,

this does not imply that the yield curve response to QE1 is hardwired
to be the same as a (scaled-up) auction demand shock. Thematurity com-
position, asset composition, and the stochastic properties of the QE1
shock in the model differ from the estimated demand factors. Thus,
the yield response to the QE shock versus the demand factors will not
be proportional: ∂yðtÞt =∂bðQEÞ

t /∝∂yðtÞt =∂bk
t .

Figure 7A plots the cumulative change observed in the data and pre-
dicted in the model. We use the cumulative change in the yield curve re-
ported in Krishnamurthy and Vissing-Jorgensen (2011) following the five

19 In our analysis, we exclude purchases of agency debt (which accounts for a small frac-
tion of the total purchases during QE1), given the complexities associated with the health
of Freddie Mac and Fannie Mae.
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major QE1 event dates as the empirical response of the yield curve to
QE1. The remarkable consistency between the responses suggests that
the actualmarket reaction toQE1 announcements aligns with the predic-
tions of our model in response to observed shifts in private demand for
Treasuries. This finding implies that the net effect of other channels of

FIG. 7.—Model-implied response to QE1 and QT. A compares the observed (cumula-
tive) yield reactions and the model-implied change in yields following a QE1 shock (in ba-
sis points). B and C plot the model-implied impulse response functions of output and in-
flation following QE1 and QT, respectively (in percentage points).
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QE (e.g., inflation expectations, forward guidance, signaling) could be
smaller than thought before.

F. Macroeconomic Effects of Quantitative Easing

While there is extensive research documenting the responses of financial
markets to rounds of QE, little is known about how QE affected the
broader economy because QE events are so infrequent. We cannot shed
more light on this using regression analysis or similar tools, but we can
use our calibrated model to quantify the macroeconomic effects of QE.
Figure 7B shows that our baseline calibration implies that in terms

of macroeconomic effects, on impact QE1 increased output by roughly
0.73 percentage points and inflation by 0.36 percentage points. These
effects then monotonically fall toward zero over the next few years.
The cumulative effects are

Ð ∞
0 E0½xt �dt ≈ 0:56 percentage points andÐ ∞

0 E0½pt �dt ≈0:64 percentage points. For comparison, these stimulative ef-
fects of QE1 are comparable to a rate cut of roughly 50–75 basis points in
the model, undertaken when financial markets are not distressed (and
note that conventional monetary policy rate cuts have a faster degree
of mean reversion in our model).20

G. Comparing Quantitative Easing and Tightening

To rein in inflation, central banks are beginning the implementation of
QT (shrinking their balance sheets through asset sales or a reduction in
reinvestment of maturing assets). In our linearized model, QE and QT
aremirror images of one another. Differences in themacroeconomic im-
pacts of QE and QTcan arise only from differences in the financial envi-
ronment or in the design of the program. These differences are salient
in the context of the Fed’s QT policy, which began in June 2022. First,
the Fed is conducting QT in a relatively passive, back-loaded fashion:
QT began with a monthly reduction of up to $30 billion in Treasuries and
$17.5 billion in MBS, with both caps doubling after one quarter. The in-
creasing pace of QT (which was announced in advance) differs from how
the Fed conducted QE1. Second, the Fed’s QT has focused more on a

20 In our model, there is little difference between (1) the Fed buying assets (and thus
reducing assets available to the private market) and (2) the Treasury issuing less debt
(and thus reducing assets available to the private market). Thus, while comparing our es-
timated effect of QE1 and actual data, one should keep in mind that the Treasury in-
creased issuance of debt by approximately $2.7 trillion between December 2008 and Octo-
ber 2010 (the duration of QE1) relative to the precrisis trend. The average maturity of debt
issued over this period was 6.4 years. If we assume that this shock to the supply of govern-
ment debt is as persistent as QE1 (i.e., debt is held to maturity), then QE1 was roughly off-
setting the increased supply of Treasuries and the combined macroeconomic effect of
changes in government debt due to fiscal and monetary policies was a wash.
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reduction of Treasury holdings than MBS, again in contrast with QE1.
Third, the maturity composition of QT is shorter than QE1. Fourth, al-
though the Fed has not specified the size of QT, this program is likely
to be larger than the purchases undertaken during QE1. Finally, risk-
bearing capacity of financial markets is higher now than during QE1.
While there is substantial uncertainty associated with how the Fed will

conduct QT going forward, we attempt to parsimoniously capture these
salient differences within the model. We assume that the QT sales shock
b
QT
t is composed of 65%Treasuries and 35%MBS,mimicking the compo-

sition of the Fed’s QT balance sheet reduction caps. In line with the ma-
turity composition of the Fed’s balance sheet, we also assume that
v
QT
1 5 0:5 so that thematurity of the assets sold during QT is shorter than
the maturity of assets purchased during QE1 (and the mean of vQTðtÞ is
4 years; fig. B27 compares the change in the Fed’s Treasury holdings by
maturity following QE1 and QT). Capturing the passive, back-loaded ap-
proach of QTwhile maintaining themean-reverting properties necessary
in themodel requires some additional changes.We posit that bQT

t is amix-
ture of an active component (bQT,A

t ) and a passive component (bQT,P
t ) such

that bQT
t 5 lQTb

QT,A
t 1 ð1 2 lQTÞbQT,P

t , where

dbQT,A
t 5 2kQT,Ab

QT,A
t dt, (34)

dbQT,P
t 5 2 gQT,A,Pb

QT,A
t 1 kQT,Pb

QT,P
t

� �
dt: (35)

Thus, QT sales initially are driven by the active component bQT,A
t , which

reverts back to steady state just as ourQE1 shock (andwe choose the same
inertia kQT,A 5 kQE).However, the passive factor bQT,P

t then kicks in, captur-
ing the slow increase in the magnitude of QT sales following the an-
nouncement of QT (taken into account by market participants). We
choose gQT,A,P 5 1:75, kQT,P 5 2:25, and lQT 5 0:25 so that the QT shock
doubles in magnitude after one quarter, peaks after 1 year, and then re-
verts to half of the peak after roughly 4–5 years. The overall magnitude
of the initial QT shock is chosen to be double that of QE1: ΔbQT,A

t 5 2 �
ΔbQE

t . Thus, while QT sales are smaller than QE1 purchases at the begin-
ning of the program, QT sales eventually surpass QE1 in magnitude, re-
maining elevated so that the cumulative size of QT is larger than QE1.21

21 Figure B28 compares the dynamics of QE1 and QT shocks in the model. The Fed has
been very clear about the initial timing of the Treasury and MBS caps (e.g., see the March
2022 FOMC statement; Federal Reserve Board 2022). Going forward, the FOMC has stated
that they intend to “maintain securities holdings in amounts needed to implement mon-
etary policy efficiently and effectively in its ample reserves regime,” although the FOMC
has been reticent regarding what this means quantitatively. But if we take the size of the
balance sheet pre-COVID as this target level, then the overall size of QT relative to gross
domestic product would be roughly twice the size of QE1 (see also Ennis and Kirk
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Finally, we choose the risk-adjusted parameters to be equal to 75% of
our baseline QE1 calibration. On the one hand, despite increased volatil-
ity during COVID-19, many broadmeasures of financial distress (e.g., the
Chicago Fed National Financial Conditions Index) remain significantly
below the peaks observed during the Great Recession. On the other
hand, some measures of intermediary health, like He, Kelly, and Manela
(2016), that are more closely related to the risk-bearing capacity of ar-
bitrageurs show signs of deterioration in the last year (see fig. B12). Thus,
we split the difference for our baseline QTexperiment. However, we view
this as a lower bound on risk-bearing capacity (and hence the macroeco-
nomic reactions to QT should be viewed as upper bounds).
Figure 7C plots the impulse response of inflation and the output gap to

our QTshock. Despite the fact that QT is larger in magnitude than QE1,
the macroeconomic effects on impact are somewhat smaller. For in-
stance, the initial response of output and inflation is a decline of between
0.25 and 0.3 percentage points. However, the persistent passive compo-
nent also generates a longer-lasting effect of QT compared with QE1
and implies that the response of the output gap to QT is hump shaped
rather than monotonic.
The design of QT is in part responsible for the relatively muted re-

sponse of output and inflation. However, the key difference between
QE1 andQT is the risk-bearing capacity of financialmarkets. As discussed
above, when risk-bearing capacity increases (a → 0), our model collapses
to a textbook New Keynesian model and recovers the standard neutrality
results regarding asset purchases or sales.
In summary, our model suggests that QT will not induce substantial

downward pressure on inflation. The differences in the model-implied
effects of QE and QT motivate our subsequent sensitivity analysis for
the design of these programs.

H. Alternative Designs of Quantitative Easing

Wenow explore how variations in structural parameters and in the imple-
mentation of QE influence the ability to move output and inflation. Be-
cause in our model output and inflation comove strongly in response
to QE shocks, we focus on the sensitivity analysis for output responses
(fig. 8) and relegate results for inflation to the online appendix (fig. B29).
For all sensitivity analyses, we study how the macroeconomic effects vary
in our baseline calibration (solid line) and also compare with counterfac-
tual risky-only and Treasury-only QE policies (dashed and dotted lines,

2022). Hence, these calibration choices represent our best translation into a mean-reverting
shock in the model. With the linearity of the model, responses scale one-for-one with the size
of shocks. All other sensitivity analyses are conducted in sec. IV.H.
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FIG. 8.—QE sensitivity analysis: output. The figure shows the response of output to a
QE shock as a function of various model parameters. A, Arbitrageur risk aversion (a).
B, Risky payoff uncertainty (jd). C, QE mean reversion (kQE). D, QE maturity duration (vQE

1 ).
E, Effective borrowing maturity weights (h1). F, Effective borrowing risky/safe weights (h0).
G, Inflation Taylor coefficient (fp). H, Output gap Taylor coefficient (fx). I, Inertia Taylor
coefficient (ki). J, QE volatility (jQE). In each panel, the dotted line corresponds to the base-
line QE calibration. The orange dashed line shows results for a hypothetical QE policy that
purchases risky assets only; similarly, the blue dashed line is for Treasury-only purchases.
J reports the long-run volatility Var½xt �, while all other panels report the cumulative effectÐ ∞
0 E0½xt �dt.



respectively), which are identical to our QE1 calibration but purchase
only risky or safe assets.
Risk appetite.—As we discussed above, the power of QE to affect yields

at target maturities is high in crisis times and weak in noncrisis times.
Consistent with this insight, figure 8A shows that the transmission is
highly sensitive to the risk aversion of arbitrageurs. Given that our base-
line calibration for crisis corresponds to the Great Recession, one has to
have a financial crisis of truly unprecedented proportions to materially
increase the power of QE-based tools. As a result, the balance of risks ap-
pears to be somewhat one-sided: it is difficult to raise the power of QE
beyond what was achieved during the Great Recession, but it is relatively
easy to reduce the power as soon as financial panics calm down. This
logic suggests that QE is less effective as a conventional tool to the extent
that “conventional” entails well-functioning financial markets (and was
reflected in our analysis of QT). This finding is true regardless of the
design of QE purchases: the counterfactual risky-only and Treasury-only
QE policies have the same pattern as a function of risk aversion.
Risky asset uncertainty.—Wenext discuss how the transmission of QE de-

pends on the riskiness of risky assets. Figure 8B plots the long-run effect
of QE on output as we increase jd from the baseline calibration. We find
that QE policy has larger macroeconomic effects as risky assets become
riskier. The intuition for this can be seen by examining the counterfac-
tual risky-only and Treasury-only QE policies. Unlike the previous sensi-
tivity exercise, these policies act differently as a function of risky asset un-
certainty. As uncertainty increases, the effect of risky asset purchases on
output increases. However, the impact of Treasury purchases decreases.
Intuitively, when risky asset payoff uncertainty is very low, Treasuries and
risky assets are good substitutes (in the limit of no payoff risk, these two as-
sets become perfect substitutes). In this case, risky-only and Treasury-only
QE policies have similar effects on household borrowing rates, and there-
fore macroeconomic transmission is similar because the payoff risk ex-
traction channel discussed in section IV.C disappears. However, as risky
asset uncertainty increases, Treasuries and risky assets become less substi-
tutable. Now, risky-only QE policies are highly effective at moving house-
hold borrowing rates (and therefore have larger macroeconomic ef-
fects), while Treasury-only QE policies have smaller effects.
Unwinding.—One practical question for policy makers is how long cen-

tral banks should hold assets accumulated during QE rounds (e.g.,
Karadi and Nakov 2020; Sims and Wu 2020). To this end, we vary kQE in
equation (33), which governs the unwinding process. Figure 8C shows
that the effects on output nearly double when comparing very fast and
very slow unwinding (the x-axis reports results from kQE ∈ ð0:05, 1:0Þ, im-
plying a half-life of about 14 years to three quarters, respectively). Intui-
tively, if the Fed makes large purchases of assets but then quickly sells
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those securities, we should not observe large and long-term macroeco-
nomic effects. Rather, it is the cumulative size of QE over time that mat-
ters. Hence, policy makers should be clear about how long the central
bank expects to hold the securities on its balance sheet. Providing a type
of forward guidance regarding the expected path of purchases can po-
tentially increase the immediate effectiveness of these policies.
Asset maturity.—The maturity of the assets purchased during QE is one

of the key decisions policy makers must make. The x-axis of figure 8D is
the maturity of the assets purchased (where a higher value implies shorter
maturity). The baseline QE policy has larger macroeconomic effects as
the maturity of the purchased assets increases. Long-maturity assets are
riskier in terms of duration risk, and hence purchasing these assets ampli-
fies the duration risk extraction channel. However, we again see a dichot-
omy between the counterfactual Treasury-only and risky-only QE poli-
cies. This is because the payoff risk extraction channel is still active
when the duration of the risky asset purchases is short. Hence, while Trea-
sury purchases become ineffective as the maturity becomes very short
term, risky asset purchases still have sizable macroeconomic effects.
Effective borrowing weights.—Figures 8E and 8F explore the robustness of

our assumptions regarding the effective borrowing weight function h(t),
which as discussed above is an important input into ourmodel. Figure 8E
plots the long-run macroeconomic effects of QE as the effective borrow-
ing rate weights become more concentrated at short-term rates (larger
values of the x-axis) or at long-term rates (smaller values of the x-axis).
As expected, if the macroeconomy is more sensitive to longer-term bor-
rowing rates, QE has a larger impact on output. Because the short end
of the term structure is pinned down by the Fed’s policy rate, QEwill have
larger effects on intermediate Treasury yields. Moreover, given the local-
ization results discussed above, longermaturity purchases will have larger
effects on long-term rates when the risk-bearing capacity of financial mar-
kets is relatively low.
Figure 8F varies the weights placed on safe and risky borrowing rates.

The baseline effective borrowing rate depends entirely on risky rates (cor-
responding to the x-axis value of 0). We compare with alternative weights
placed on safe borrowing rates, up until the effective rate is a function of
only safe rates (x-axis value of 1). As expected, when household borrow-
ing is more sensitive to safe rates, the counterfactual Treasury-only QE
program becomes more powerful. However, the magnitude of the differ-
ences are small.
Interaction with conventional policy.—Next we turn to how the macroeco-

nomic effects ofQE interact with conventional policy via the standardTaylor
rule. Figures 8G, 8H, and 8F vary the Taylor coefficients on inflation fp, the
output gap fx, and inertia ki, respectively. In general, if markets expect
the Fed to react to the macroeconomy more quickly and aggressively with
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the policy rate (corresponding to larger values on the x-axis), then the mac-
roeconomic effects of QE are attenuated. However, for a wide range of coef-
ficient values, the macroeconomic effects of QE are quantitatively similar.
QE uncertainty.—Finally, we assumed that QE1 was completely unantici-

pated bymarkets. This may be an accurate representation of the first round
of QE, but over a decade later it is likely that markets now consider the pos-
sibility of futureQE shocks. Tomodel the recurrentnatureofQE,wemodify
equation (33) and instead assume that QE shocks are described by

dbQE
t 5 2kQEb

QE
t dt 1 jQEdBQE,t : (36)

Hence, whenever jQE > 0, QE shocks themselves may lead to additional
macroeconomic volatility. Further, risk-averse arbitrageurs must hedge
against QE risk in addition to fundamental sources of risk in the economy.
Figure 8J explores the change in long-run macroeconomic volatility as a

function of the volatility of QE shocks. jQE 5 0 is our baseline estimate
(marked by the vertical dotted line); the x-axis is the volatility of QE shocks
relative to the volatility of habitat demand shocks jQE=jb; the y-axis is the
long-run (unconditional) variance of output Var[xt]. The results provide
an important note of caution for central bankers: increased uncertainty re-
gardingQE leads to increasedmacroeconomic volatility. In other words, al-
though policy makers may desire the added flexibility of discretionary QE
tools, the downside is that this increases the uncertainty surrounding these
policy tools. By communicating clearly the expected path of QE purchases,
policymakers should be able to reducemarket uncertainty and prevent vol-
atility spillovers from QE into the real economy. This provides additional
support for the use of QE rules or forward guidance regarding asset pur-
chases in the spirit of Greenwood, Hanson, and Vayanos (2016).22

V. Concluding Remarks

QE programs during the Great Recession were a massive policy experi-
ment. The redeployment of QE in response to the COVID-19 crisis and
the current reversal through QT is a testament to policy makers’ belief
in their effectiveness. But the precise channels through which QE poli-
cies work are still not clear, and so this paper seeks to unbundle QE by
isolating one specific channel. Our focus is preferred habitat, which hy-
pothesizes that there are investor clienteles with specific preferences for
bonds within a given maturity segment. Utilizing Treasury auctions, we
identify shifts in private demand for Treasuries that mimic QE but are in-
dependent of all other plausible channels of QE. We develop and con-
firm a key localization test of preferred habitat theory: when risk-bearing

22 Additional robustness exercises are reported in figs. B30 and B31.
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capacity is low, purchase or sale shocks of specific bonds in a given matu-
rity segment have larger effects on bonds within this range. We then de-
velop a general equilibrium preferred habitat model, using our demand
shock results to discipline themodel calibration. Our quantitative results
are consistent with the view that QE programs worked largely through
preferred habitat forces and that QE is a useful (but modest) policy tool
for macroeconomic stabilization during crises. However, the effects of
QE weaken if financial markets are well functioning, the holding period
of assets purchases is short, or the program focuses on safer, shorter-
duration assets. Further, uncertainty about future QE/QT rounds can
lead to excess macroeconomic volatility. Given the design of QT as well
as the prevailing financial environment, our model predicts rather small
effects on output and inflation.
Our results suggest several promising directions for future work. First,

the demand shocks we construct are a potentially important input to eval-
uate a host of quantity-based asset pricing theories. Second, while we have
focused on preferred habitat in the market for Treasuries and other debt
securities, this channel may be relevant for other arenas too. For exam-
ple, we document suggestive evidence supporting state dependence of
demand shock spillovers toMBS andpossibly to equities. In a similar spirit,
Greenwood et al. (2020) andGourinchas, Ray, andVayanos (2022) explore
preferred habitat effects in currency markets and international bond mar-
kets. Finally, preferred habitat is one of many financial frictions relevant
for economic agents. It will be interesting to explore howpreferredhabitat
interacts with debt versus equity structure of firms, liquidity constraints,
and banking frictions. Apart from clarifying the distributional aspects of
QE-like policies, this extension could also shed more light on how pre-
ferred habitat can affect investment.

Data Availability

Code and data for replication can be found in Ray, Droste, and Gorod-
nichenko (2024) in the Harvard Dataverse, https://doi.org/10.7910
/DVN/KHZI1L. This also includes information about the proprietary
data used in this article.

Appendix A

Proofs

A1. Proof of Lemma 1

Collect all state and jump variables in a vector Yt 5 ½ y⊤t x⊤
t �⊤. The interest rate

process (15), risky asset payoff process (16), and habitat demand factor processes
(14) are all affine functions of Yt. Moreover, the (linearized) Phillips curve (17)
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and IS equation (18) are also affine functions of Yt, since from equation (21)
r̂t 5 Â⊤yt 1 Ĉ is affine in the state variables. Aggregate dynamics can thus be
written

dYt 5 2Υ Yt 2 �Yð Þdt 1 S dBt : (A1)

Note thatΥ depends on Â but which we currently take as given. Then the rational
expectations equilibrium is found immediately from Buiter (1984). Partition the
eigenvalues and eigenvectors as follows:

Υ 5 QΛQ21,Λ 5
Λ1 0

0 Λ2

" #
,Q 5

Q11 Q12

Q21 Q22

" #
,

where the partitions correspond to the state yt and jump xt variables. If the num-
ber of “stable” eigenvalues (nonnegative real parts) equals the number of state
variables, then the rational expectations equilibrium dynamics are given by
(22) and (23), where

Γ 5 Q11Λ1Q
21
11 ,Ω 5 Q21Q

21
11 : (A2)

QED

A2. Proof of Lemma 2

Since asset prices are given by (24) and the state evolves according to (22), Ito’s
lemma implies that dP ðtÞ

t =P ðtÞ
t 5 m

ðtÞ
t dt 1 jðtÞdBt , with jðtÞ 5 2AðtÞ⊤j and

m
ðtÞ
t 5 A0ðtÞ⊤yt 1 C 0ðtÞ 1 AðtÞ⊤Γ yt 2 �yð Þ 1 1

2
AðtÞ⊤ΣAðtÞ, (A3)

where Σ ; jj⊤ and with analogous expressions for ~P ðtÞ
t . Differentiating the arbi-

trageur budget constraint (10) with respect to holdings X ðtÞ
t gives the optimality

conditions

m
ðtÞ
t 2 it 5 a

ðT
0

X ðtÞ
t AðtÞ 1 ~X ðtÞ

t
~AðtÞdt

� 	⊤
ΣAðtÞ,

again with analogous conditions with respect to ~X ðtÞ
t .

Substituting equation (24) into the habitat demand equations (13), we can
write Z ðtÞ

t 5 ½aðtÞAðtÞ 2 ΘðtÞ�⊤yt and ~Z ðtÞ
t 5 ½~aðtÞ~AðtÞ 2 ~ΘðtÞ�⊤yt , where

ΘðtÞ 5 ⋯ vkðtÞ ⋯
� �⊤

, ~ΘðtÞ 5 ⋯ ~vkðtÞ ⋯
� �⊤

: (A4)

Then substitute market clearing conditions X ðtÞ
t 5 2Z ðtÞ

t , ~X ðtÞ
t 5 2~Z ðtÞ

t into the
optimality conditions and collect terms that are linear in the state yt to get

A0ðtÞ 1 MAðtÞ 2 ei 5 0, ~A0ðtÞ 1 M~AðtÞ 2 ei 5 0, (A5)

whereM is given by equation (26). If we takeM as given, this is a linear system of
differential equations. To derive initial conditions, note that at maturity, the risk-
less bonds pay $1, while the risky asset pays Dt, so the t 5 0 prices are given by
P ð0Þ
t 5 1, ~P ð0Þ

t 5 Dt . Hence, we have (Að0Þ 5 0, ~Að0Þ 5 2ed). Then if we assume
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that M is diagonalizable and invertible, the solution is given by equation (25).
QED

A3. Proof of Proposition 1

In an affine equilibrium where asset prices are given by equation (24), we have
that r̂t 5

Ð T
0 ðhðtÞmðtÞ

t 1 ~hðtÞ~mðtÞ
t Þdt. Substituting equations (A3) and (A5) into this

expression and collecting terms that are linear in the state yt gives equation (27).
Equilibrium is the solution of the fixed point problem implicitly defined by equa-
tions (26) and (27). Rewrite these conditions in the following function:

f ðÂ;M; aÞ 5
ei 1 ΓðÂÞ⊤ 2 M

� �
nðMÞ 2 Â

vec ΓðÂÞ⊤ 2 a � ΛðMÞ 2 M

 �

2
4

3
5, (A6)

where L(M) and n(M) are the integral terms from equations (26) and (27). In both
cases, dependence onM comes through the affine coefficients A(t), ~AðtÞ. We have
also made explicit the dependence of G on Â, which can be seen in the proof of
lemma 1. If J ; dim yt , then dim M 5 J � J and dim Â 5 J and the function
f :RJ ð J11Þ11 →RJ ð J11Þ. For any value of a, equilibrium is defined by f ðÂ;M; aÞ 5 0.

We now analyze the solution in a neighborhood around a 5 0. For a 5 0,
clearly Â 5 ei and M 5 ΓðeiÞ⊤. The partial derivatives evaluated at this point
are given by

∂f
∂Âj

5
∂Γ⊤=∂Â j

� �
nðMÞ 2 ej

vec ∂Γ⊤=∂Â j

� �
" #

,
∂f
∂Mkl

5
eke

⊤
l nðMÞ

2vec eke
⊤
l

" #
,

where ej, ek, el are standard normal basis vectors. The matrix ∂Γ=∂Â j is the deriv-
ative of the state dynamics matrix G with respect to the j-element of Â; because
this depends on derivatives of the eigendecomposion defined in the proof of
lemma 1, even in the case of a 5 0 this is a complicated expression. Neverthe-
less, from this we can show that the Jacobian of f with respect to Â, M evaluated
at the a 5 0 solution has full rank. In fact, writing this Jacobian in block form, we
have

Df ;
D11 D12

D21 2IJ 2

" #
, (A7)

and D12 5 ½IJ � n1 ::: IJ � nJ �, where nj is the j -element of n(M). Because the ele-
mentary row operations that transform D12 into the zero matrix simultaneously
transform D11 into 2IJ, det Df 5 1 and the result follows from the implicit func-
tion theorem. QED
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