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This document is intended to serve as a brief refresher to the mathematical toolkit and microeconomic
concepts that you will see in Harvard’s public economics sequence. Ec2450 assumes some experience with
graduate-level microeconomics and quasi-experimental econometric methods. This review document is not
a substitute for this background; it is intended only to serve as a reference and refresh your memory on
concepts you have seen in the past.

Section 1 reviews some mathematical tools that we will repeatedly use, including constrained optimization
and the envelope theorem. Section 2 refreshes some core concepts from consumer theory. Section 3 pro-
vides some optional practice problems for your review. Section 4 provides some references on optimization,
microeconomics, and empirical / econometric methods. This is not a comprehensive document; we will use
and extend additional material as the semester goes on.

1 Mathematical Tools
1.1 Static Constrained Optimization
In this course, most often we will be considering the behavior of economic agents (i.e. consumers/households,
firms, policymakers) whose behavior we characterize as the solution to (usually static) constrained optimiza-
tion problems. For instance, a household may be choosing consumption and labor supply to maximize utility
subject to a budget constraint; a firm may be choosing production inputs, like capital and labor, to maximize
profits (perhaps subject to consumer demand); a government may be choosing a tax schedule to maximize
social welfare subject to a desired level of tax revenue.

Let’s work through a simple example involving a utility maximization problem. A household chooses a
bundle x ∈ Rn in order to maximize a utility function u(x) : Rn → R subject to a budget or resource
constraint g(x, r) = 0. This problem can be written as:

max
x

u(x) subject to: g(x, r) = 0

You can think of r as any interesting parameter(s) of the problem that is exogenous to the optimizing agent
(e.g. welfare benefits from the government, unearned income, etc...).

The standard approach to solve constrained optimization problems is the Lagrange multiplier method, likely
very familiar to you already. The steps are always the same:

1. Construct the Lagrangian function corresponding to the problem:

L(x, r) = u(x) + λg(x, r) (1)

where λ is a constant that we will call the Lagrangian multiplier.
∗These notes were created from materials shared by past 2450A teaching fellows. All errors are my own.
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2. Take partial derivatives of the Lagrangian function L with respect to x and λ, and set them equal to
0 (thus obtaining the first-order conditions, or FOCs):

∀k ∈ [1, ..., n] :
∂L
∂xk

=
∂u(x)

∂xk
− λ

∂g(x, r)

∂xk
= 0

∂L
∂λ

= g(x, r) = 0

Note that the last partial derivative simply gives you back the constraint.

3. Solve the system of n+ 1 equations and unknowns characterized by the first-order conditions and the
variables (x1, ..., xn, λ) for optimal choices of x1, ..., xn.

4. If the Lagrangian is concave (convex), then the candidate solutions obtained from the first-order
conditions solve the maximization (minimization) problem.

1.1.1 Variations on this problem

• The Lagrange multiplier method generalizes easily to a setting with multiple constraints. Each con-
straint gets added to the Lagrangian function with its own multiplier.

• If you have an inequality constraint, g(x, r) ≥ 0, you have to add the complementary slackness condition
∂L
∂λ · λ = 0. This tells us that either (i) the constraint binds, in which case the first-order condition is
satisfied with equality (g(x, r) = 0); or (ii) the constraint does not bind (g(x, r) > 0), and therefore
the Lagrange multiplier has to be λ = 0 (see the interpretation of the multiplier below to see why).

• If we have non-negativity constraints and they are binding, we need to consider the Kuhn-Tucker
(KT) Conditions, which state that if x∗ is a solution to the problem above, then x∗ satisfies the KT
conditions. That is, there exists a Lagrange multiplier λ ≥ 0, such that for all i ∈ [1, ..., n],

∂u(x∗)

∂xi
≤ λ

∂g(x∗, r)

∂xi
,

with equality when x∗
i > 0 and g(x∗, r) = 0.

For the purposes of this course, we will generally not need to deal with inequality constraints or non-negativity
constraints. For the models we consider, there is typically something about the economic environment that
guarantees constraints bind with equality at an optimum or in equilibrium. For instance, in a consumer
utility maximization problem, if the consumers’ preferences exhibit local non-satiation, an optimal solution
will always imply a binding budget constraint (Walras’ law) - the consumer will always be on the budget
frontier.

1.1.2 Interpreting the Lagrange Multiplier

Suppose x∗(r) are the values of x that solve the optimization problem in the preceding section. The associated
value of the objective function (e.g. utility) given the optimal x∗ is therefore a function of r, with V (r) =
u(x∗(r)) (the value function of the problem). Provided that certain mild regularity conditions are satisfied,
we have the following result:

dV (r)

dr
= λ(r)

Thus, the Lagrange multiplier λ = λ(r) is the rate at which the optimal value of the objective function
changes with respect to changes in the constraint parameter r. It is sometimes called the shadow price of
resource r (because it indicates by how much the value function would increase in response to an increase in r).

Loosely, the Lagrangian multiplier λ answers the question, "If the constraint is relaxed by one unit, how much
does the objective function change?" For example, in a static consumer utility maximization problem with a
single budget constraint, the Lagrangian multiplier would tell us the marginal increase in utility induced by
a marginal increase in income.
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1.2 Comparative Statics and Implicit Differentiation
In the course, we will often be interested in how an agent’s behavior changes as parameters of the economic
environment (for instance, prices or taxes) change. If we have solved for the first order conditions that
govern the agent’s behavior, we can differentiate the first order condition(s) w.r.t. the parameter of interest.
Suppose that we have a first order condition Lx(x, p) = 0. Here, x is a variable that the agent optimizes
over and p is an exogenous parameter of the model that the agent takes into account but does not choose
herself. If we’re interested in learning how the agent’s choice of x changes as p changes, we can (implicitly)
differentiate both sides of the equation Lx(x, p) = 0 w.r.t. p:

∂Lx(x, p)

∂x

dx

dp
+

∂Lx(x, p)

∂p
= 0

This allows us to express the effect of p on x even if we cannot explicitly solve for x itself :

dx

dp
= −

∂Lx(x,p)
∂p

∂Lx(x,p)
∂x

Implicit differentiation will work as long as the conditions for the implicit function theorem are met (you
do not need to know the technical conditions for this course - except making sure that the denominator is
different from 0). Remember the formula:

F (x, y) = 0 ⇒ dy

dx
=

Fx(x, y)

−Fy(x, y)
, (Fy(x, y) ̸= 0) (2)

This formula is known as the implicit function theorem.

1.3 Envelope Theorem
The envelope theorem is your best friend in the public economics sequence. It comes up all the time. The
envelope theorem loosely says that if we are interested in computing the comparative static of a value function
that depends on an optimized quantity with respect to some exogenous variable r, then we can ignore the
indirect effect that dr has on the choice variables. It will be useful to illustrate the envelope theorem through
a simple example. Nearly all of the instances in which we use the envelope theorem will have the same flavor.

Simple case with two choice variables

Suppose we wish to solve the following maximization problem:

V (α) ≡
{
max
x,y

f(x, y, α) s.t. g(x, y, α) = 0

}
(3)

where x, y are choice variables and α is some exogenous parameter(s). V (α) is the value function correspond-
ing to this problem: it is the value that the objective function f takes, given the optimal choice of (x, y), as a
function of the exogenous parameter α. For instance, if f is a utility function and g is a budget constraint in
a simple static utility maximization problem, the value function V would tell you the level of utility realized
by the consumer when they choose the optimal (x, y) as a function of the exogenous parameter(s) α.

The Lagrangian corresponding to this problem is:

L(x, y, λ, α) = f(x, y, α) + λg(x, y, α) (4)

This Lagrangian yields the following first-order conditions:

∂L

∂x
= fx(x, y, α)− λgx(x, y, α) = 0

∂L

∂y
= fy(x, y, α)− λgy(x, y, α) = 0

3



The solution to this problem is given by x∗(α) and y∗(α). Substituting this into the value function, we get
that V (α) = f(x∗(α), y∗(α), α) = L(x∗(α), y∗(α), λ∗(α), α).

Taking the total derivative of V w.r.t. to exogenous parameter α:

dV

dα
= fx

dx∗

dα
+ fy

dy∗

dα
+ fα

Notice there is a direct effect of α on the value function from the last term. The first two terms are indirect
effects in which α affects the control variables x and y.

The first-order conditions imply that at the optimum, fx = λ∗gx and fy = λ∗gy. Plugging these in:

dV

dα
= λ∗

(
gx

dx∗

dα
+ gy

dy∗

dα

)
+ fα

Totally differentiate the constraint with respect α at the optimum:

gx
dx∗

dα
+ gy

dy∗

dα
− gα = 0

which implies that
dV

dα
= fα + λ∗gα =

∂L

∂α
(5)

This result is known as the envelope theorem: a change in the value function w.r.t a small in change in
an exogenous parameter is equal to the partial derivative of the Lagrangian with respect to the parameter.
The indirect effect drops out when we plug in the first-order conditions.

For a formal statement of the envelope theorem, see MWG Theorem M.L.1, p. 965. There are several useful
intuitive ways to break down the envelope theorem, depending on how general you want to get. My preferred
intuition is the following: at an optimum, changes in α have two impacts on the objective function: a first-
order “direct effect” through the impact α has on the constraint or objective function, and a higher-order
“indirect effect” where the change in α induces a change in the choice variables that impacts the objective /
value function. If we only consider very small changes in α like dα, the first-order effect completely dominates
the higher-order indirect effect. This is all implicit when we apply the envelope theorem to a comparative
static, since in this case dα is an infinitesimally small quantity.

It is important to note that while the envelope theorem only holds exactly for infinitesimally small changes
in α, it does not rely on the objective function being differentiable with respect to the choice variables (as
we assumed in our derivation above), or of continuous choice sets. Indeed, we will see a neat application of
the envelope theorem to discrete choices in this course. The rather general conditions for which envelope
theorem-like statements hold is covered by Milgrom and Segal (2002).

Why is this result so powerful?

The envelope theorem tells us that in some cases, we can ignore indirect effects of a change in an exogenous
parameter on the value function. This is great, because it means that comparative statics involving value
functions are often quite simple to compute. In addition, the envelope theorem often gets rid of parameters
in our model from a comparative static, which is useful when those parameters might be difficult to estimate
in practice.

Concretely, suppose we are interested in a comparative static like how consumer utility changes when the
price of a single good changes (du/dp). The indirect effect that a change in p has on the consumer’s choice
of goods falls out: all that’s left is how the price change impacts the consumer’s budget. In an ideal case, we
might not even need to place a functional form on the utility function to calculate the comparative static.
That’s great - it’s less math to compute the comparative static, and our calculation does not depend on
some utility function parameter(s) that we would rather not hang our hats on.
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What are the limitations to this approach?

While the envelope theorem is super powerful and convenient, it has some limitations that you need to know.
A key part of the course is distinguishing when the envelope theorem fails.

First, the envelope theorem is only exact for infinitesimal policy changes (dα very small). This is assumed
in the calculus-based derivation we consider above, where the ’policy change’ in our comparative static is
dα. For large policy changes (for instance, if we want to assess the real-world consequences of a big tax
cut), we cannot simply ignore the impact that a change in some paraameter/policy has on value functions
indirectly through a quantity being optimized. This is quite important in practice: many empirical papers
use estimators or give interpretations to estimands that rely on the envelope theorem, which is a problem if
the policy change in question is not small.

Next, the envelope theorem relies on a quantity being optimized, i.e. first-order conditions holding. In
the presence of externalities, behavioral agents, incomplete markets, etc., the envelope theorem may not
hold. We will encounter several concrete examples in 2450A that will allow us to think about these kinds of
limitations in more detail.

2 Microeconomics review
2.1 Utility Maximization
To think about welfare, economists usually assume that consumers are rational actors who make economic
decisions (about their consumption, labor supply, etc) according to their preferences. Under mild regularity
conditions, a consumer’s preferences can be represented by a utility function. Since consumers choose their
most preferred element in their budget set, this corresponds to the utility maximization problem (UMP):

V (p, w) = max
x∈B(p,w)

u(x) (6)

where B(p, w) = {x ∈ Rn : p · x ≤ w} denotes the budget set (which in this choice of notation reflects the
constraint), x is a vector of goods, p is a vector of prices with each entry corresponding to a specific product,
and w is exogenous wealth or income.

We say that x∗ solves the UMP if x∗ maximizes u on B(p, w). We denote a solution to the UMP at prices
p and wealth w as x(p, w) = [x1(p, w), ..., xn(p, w)]. The bundle is known as Marshallian demand (also
known as uncompensated, gross, or Walrasian demand). Given solutions to the UMP, we plug them into the
utility function to obtain the value function for this problem, the indirect utility function V :

V (p, w) ≡ u(x∗(p, w))

Properties of Marshallian Demand

• Walras’ law: p · x(p, w) = w for all prices p and wealth w.

• Homogeneity of degree zero in (p, w). Suppose that Marshallian demand is unique at all p and w, then
for any α > 0, x(p, w) = x(αp, αw).

Properties of Indirect Utility

• V (p, w) is increasing in w and decreasing in p.

• V (p, w) is homogeneous of degree zero in (p, w).

• Roy’s identity: For all p and w:

xk(p, w) = −∂V (p, w)/∂pk
∂V (p, w)/∂w

(7)

for k = [1, ..., n].
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2.1.1 Solution to UMP

To formally characterize the solutions to the UMP, we assume that utility is smooth and quasiconcave. For
now, it is useful to derive the first order conditions to the UMP assuming that the solution is in the interior.

The Lagrangian corresponding to the UMP is:

L(x, p, w, λ) = u(x) + λ(w − p · x)

where λ is the Lagrange multiplier. The corresponding FOCs are:

∀i ∈ [1, ..., n] :
∂u(x)

∂xi
− λpi = 0

Combining the first-order conditions for any two goods i and j yields the following characterizations of the
household’s optimality conditions:

1. The marginal rate of substitution between any two goods i and j must equal the price ratio:

∂u(x)/∂xi

∂u(x)/∂xj
=

pi
pj

2. The utility increments between any two goods i and j must be equal at the optimum:

∂u(x)/∂xi

pi
=

∂u(x)/∂xj

pj

Note that these two statements are equivalent (one is redundant), and both characterize optimal allocation
between any two goods i, j.

In the truly unfortunate event when the solution to the UMP is not in the interior, we need to draw on the
Kuhn-Tucker (KT) conditions. In this course, we will typically consider models where we assume regularity
conditions (i.e. quasi-concave utility) that guarantee interior solutions.

The solution to this utility-maximization problem are the Marshallian demand functions x(p, w) and y(p, w).
They tell us the consumer’s optimal quantities of goods x and y as a function of the price vector p and income
w. We cannot solve explicitly for these functions unless we assume a functional form for utility.

2.2 Expenditure Minimization
In addition to asking what the highest level of utility the household could attain subject to their budget set
(the utility-maximization problem), we could also ask: what is the smallest amount of wealth (expenditure)
needed to achieve a target utility level ū? This question defines the consumer’s expenditure minimization
problem (EMP):

e(p, ū) = min
x∈U

p · x (8)

where U = {x : u(x) ≥ ū}.

We say that xc solves the EMP if xc minimizes p · x on U . We denote a solution to the EMP at prices p
and target utility ū as xc(p, ū) = [xc

1(p, ū), ..., x
c
n(p, ū)]. The bundle is known as Hicksian demand (also

known as compensated demand). Here, utility is held constant when prices vary. To keep utility constant,
we are changing w in the background or compensating the agent. The solution to the EMP can be derived
analogously to how the UMP was solved.
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Properties of Hicksian Demand

• Homogeneity of degree zero in prices. For all p, ū, and α > 0, xc(αp, ū) = xc(p, ū).

• Symmetry of cross-price effects. For all p and ū,

∂xc
ℓ(p, ū)

∂pk
=

∂xc
k(p, ū)

∂pℓ

for all goods ℓ, k.

• Compensated law of demand. For all p, p′′, and ū,

(p′′ − p′) · (xc(p′′, ū)− xc(p′, ū)) ≤ 0

Hicksian demand is actually downward slopping! Recall that Marshallian demand need not slope
downward.

Properties of Expenditure Function

• Increasing in prices and target utility.

• Homogeneity of degree one in prices.

• Concavity in prices: For all p, p′ and γ ∈ (0, 1),

e(γp+ (1− γ)p′, ū) ≥ γe(p, ū) + (1− γ)e(p′, ū)

• Shephard’s Lemma: For all p and ū,

xc
k(p, ū) =

∂e(p, ū)

∂pk
(9)

for all k = [1, ..., n].

2.3 Connection between UMP and EMP
The connection (aka duality) between the consumer’s utility-maximization problem and their expenditure-
minimization problem is really important! The following fun facts establish that in a certain sense, the
solution for the UMP yields a quick solution for the EMP and vice versa:

• If x∗ solves the UMP at wealth w, then x∗ solves the EMP for target utility u(x∗) and e(p, u(x∗)) = w.

• If xc solves the EMP for target utility ū, then xc solves the UMP at wealth p · xc and V (p, p · xc) = ū.

2.4 Comparative Statics & Slutsky
Comparative statics answer questions of the form, ’How does an endogenous variable change as we vary an
exogenous variable?’ In the case of the UMP, we are typically concerned about how demand changes as
prices vary or ∂xl(p, w)/∂pk.

The impact of an uncompensated price change on (Marshallian) demand can be decomposed into two effects:

∂xl(p, w)

∂pk︸ ︷︷ ︸
Uncompensated effect

=
∂xc

l (p, ū)

∂pk︸ ︷︷ ︸
Substitution effect

−∂xl(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

Income effect

(10)
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This decomposition is known as the Slutsky equation. It is derived from the deep connection (duality)
between the household’s UMP and EMP:

∂xc
l (p, ū)

∂pk
=

∂xl(p, e(p, ū))

∂pk

=
∂xl(p, w)

∂pk
+

∂xl(p, w)

∂e(p, u)
xk(p, w)

We can write the uncompensated effect in terms of elasticities (the percent change in xl due to a percent
change in variable v). In general, for two variables x, y the elasticity of x w.r.t y is ϵxy = y

x
∂x
∂y = ∂ log(x)

∂ log(y) .

Now we’ve developed all the microeconomics machinery we need to coherently speak about three types of
elasticities that may be of interest to us in the real world:

1. Uncompensated price elasticity of demand of good l with respect to k:

ϵulk ≡ pk
xl

∂xl(p, w)

∂pk
(11)

Note that when l = k, it is known as the own-price elasticity and when l ̸= k, the cross-price elasticity.

2. Compensated price elasticity of demand of good l with respect to k:

ϵclk ≡ pk
xl

∂xc
l (p, ū)

∂pk
(12)

3. Income elasticity of good l:

ηl =
w

xl

∂xl(p, w)

∂w
(13)

With these two definitions, we re-write the Slutsky equation as:

ϵulk = ϵclk − bkηl (14)

where bk = pkxk

w is the budget share of good k.

8



3 Practice Problems
3.1 Envelope theorem and utility maximization
Consider the following utility maximization problem:

max
(x1,...,xn)

u (x1, ..., xn) s.t.
∑
i

pixi = y

where y is exogenous income and pi denotes the price of xi.

1. Use the envelope theorem to show that, in an interior solution, the value of the Lagrangian multiplier
is equal to the marginal utility of income.
Solution:
The Lagrangian is L = p · x+ λ(y − p · x). The FOCs imply that λ∗pi =

∂u
∂xi

for all i = 1, ..., n, which
yield Marshallian demands x(p, y). This defines indirect utility as

V (p, y) = L(p, y) = u(x(p, y)) + λ(y − p · x(p, y))

By the envelope theorem, dV (p,y)
dy = ∂L

∂y = λ.

2. Show Roy’s identity, that is:

x∗
i = −

∂V (p1,...,pn,y)
∂pi

∂V (p1,...,pn,y)
∂Y

Solution:
Starting with the numerator, we have

−λxi(p, y) +

n∑
k=1

∂u(x)

∂xk
− λpk︸ ︷︷ ︸

=0

 ∂xk

∂pi
= −λxi(p, y)

Using the solution from (1), we get the desired result.

x∗
i = −−λxi

λ
= xi(p, y)

3.2 Constrained optimization, comparative statics, and the envelope theorem
Suppose that a consumer is solving the following utility maximization problem:

max
s,c

u(s, c) =
1

1 + 1
β

s1+
1
β + c subject to: (p+ t) · s+ c = w

where s denotes consumption of a specific good and c consumption of goods other than s. The consumer
faces a price of p and an excise tax of t on s; w denotes the consumer’s wealth. The parameter β is strictly
less than 0 and strictly larger than −1.

1. Solve for the levels of s and c that maximize utility in this problem.
Solution:
We write: maxs

s1+β−1

1+β−1 + w − (p+ t)s. The first order condition w.r.t. to s is:

s1/β − (p+ t) = 0

and as a result, we derive demands for s and c:

c = w − (p+ t)1+β

s = (p+ t)β
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2. What are the comparative statics of s and c w.r.t. the gross price q = p+ t and wealth w?
Solution:
Differentiating explicitly:

∂c

∂q
= −(1 + β)(p+ t)β

∂s

∂q
= β(p+ t)β−1

∂c

∂w
= 1

∂s

∂w
= 0

3. What is the elasticity of demand for the specific good s w.r.t. the consumer price q = p+ t?
Solution:
The price elasticity of s w.r.t. to q is

ϵs,q =
q

s
βqβ−1 =

β

(p+ t)β
(p+ t)β = β

4. Suppose the government increases the tax t by a “small” amount. How does this affect the level of
utility achieved by the consumer? You can solve this “by hand” or appeal to the logic of the envelope
theorem. For this problem, you should assume that the price p is not affected by the level of the tax t
(for instance, because s is traded on the world market).
Solution:
The envelope theorem says we only worry about the direct effects of a policy change (we can ignore
behavioral responses). It follows that

dv(p, t, w)

dt
=

∂v(p, t, w)

∂t
= −s∗ = −(p+ t)β < 0

5. Provide some intuition for the result in 4.
Solution:
Small changes in prices might change s∗, but because the consumer is optimizing and has already
chosen s∗ to maximize utility, a small change dt does not change the value function. Hence, the effect
is only through the “direct” effect of taxation on the consumer’s budget constraint.

3.3 Recovering Compensated Demand Elasticities via the Slutsky Equation
1. Prove Shephard’s lemma for a case with n goods.

Solution:
The expenditure function at the optimum is

e(p, ū) = p · xc(p, ū) + µ(ū− u(xc(p, ū))

By the envelope theorem:
de(p, ū)

dpj
=

∂e(p, ū)

∂pj
= xc

j(p, ū)

2. Derive the Slutsky equation for change in pj for good i.
Solution:
We note that at the optimum, Marshalian and compensated demands coincide: x(p, e(p, ū)) = xc(p, ū).
Differentiating both sides w.r.t. to pi

∂xc
j(p, ū)

∂pi
=

∂xj(p, w)

∂pi
+

∂xj(p, w)

∂e(p, ū)

∂e(p, ū)

∂pi

=
∂xj(p, w)

∂pi
+

∂xj(p, w)

∂w
xi(p, w)
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The second line follows from Shephards Lemma and xi = xc
i at the optimum. Rearranging, we get the

Slutsky equation:
∂xj(p, w)

∂pi
=

∂xc
j(p, ū)

∂pi
− ∂xj(p, w)

∂w
xi(p, w)

3. Write the Slutsky equation in terms of elasticities and the share of income spent on good j.
Solution:
Multiplying the equation on both sides by pi/xj , we have

pi
xj

∂xj(p, w)

∂pi
=

pi
xj︸︷︷︸
=xc

i

∂xc
j(p, ū)

∂pi
− pi

xj

∂xj(p, w)

∂w
xi(p, w)

ϵj,pi
= ϵcj,pi

− pixi(p, w)

w
ηj

where ηj =
w
xj

· ∂xj

∂w , the income elasticity of good j.

4. Suppose you know the uncompensated elasticities. What further information do you need to compute
the compensated elasticity?
Solution: You need the budget share of good j and the income elasticity of good j.

5. Consider a partial equilibrium setup with two goods: good x1 and the numeraire x2. The consumer
maximizes utility subject to a budget constraint with exogenous income y. Suggest a research design
and explain how you would use it to estimate the compensated elasticity of demand for x1 with respect
to its price p.
Solution: There can be many answers for this problem. One way to think about this problem is
through an RCT where we randomize locations to get price changes and people to get vouchers. Some
groups get both changes. This should allow us to identify this compensated elasticity.

4 Useful References
4.1 Optimization and Modeling
The following chapters of Microeconomic Theory by Mas-Collell, Whinston and Green (1995) are a great
resource that have a formal treatment of the mathematical methods used in this course:

• Classical Demand Theory (chapter 3)

• Chapters M.E, M.J, M.K, and M.L from the Mathematical Appendix

Note, however, that in this course we will typically deal with “well-behaved” problems satisfying the appro-
priate regularity conditions that MWG wrestles with in all their gory detail.

4.2 Empirical Tools
This course will cover research making use of a wide variety of empirical tools. These include research designs
like event studies, difference-in-differences, instrumental variables, regression discontinuity designs, random-
ized experiments, matching methods, and panel data methods (often used in combination!). We will assume
you have seen these at least in the context of a first-year graduate econometrics course. Mostly Harmless
Econometrics: An Empiricist’s Companion by Angrist and Pischke (2009) is a great high-level resource for
these methods, although its coverage is somewhat dated.

We would also be remiss not to recommend a textbook reference for econometrics. Econometrics by
Hayashi (2001) is a fantastic textbook for the foundations of statistical (frequentist) inference and com-
mon estimators in economics. Alternatively, Econometric Analysis of Cross Section and Panel Data by
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Wooldridge (2010) is a good (somewhat dated) reference on cross-section and panel econometrics.

Be advised that empirical best practices for quasi-experimental methods are always changing. As a rule,
reference textbooks cannot describe the frontier of methods, and recently published papers will be your best
resource.
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