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Today’s Outline

- Review: Neoclassical Growth Model
- Household and Firm Problems and FOCs
- Competitive Equilibrium
- Steady State
- Transition Dynamics

- Big Push
- Production Function
- Phase Diagram
- Stability of Equilibria
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Today
- I want to spend most of today discussing the neoclassical growth model from last week:

it’s conceptually the hardest material we’ve seen so far in the course.

- I will also discuss the ’Big Push’ model from lecture 7 - introduces some new ideas worth
discussing (multiple equilibria, equilibrium stability).

- First midterm is next week in class! There will be a review session this weekend, held on
Zoom and recorded: more information soon via email.
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Neoclassical Growth Model: Household Problem
- Household: chooses consumption ct and savings at+1 each period to maximize lifetime

utility (subject to budget constraints).

- The household’s problem can be written as (with period budget constraints):

max
{ct ,at+1}∞

t=0

∞∑
t=0

βtu(ct) subject to ct + at+1 = (1 + rt)at + wt

a0 given

where the household takes initial savings a0, the interest rate rt , and the wage wt as given.

- Solution to household’s problem takes the form of Euler equation:

u′(ct) = β(1 + rt+1)u′(ct+1)
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Neoclassical Growth Model: Firm Problem
- Firm chooses capital kt and labor `t to maximize profits each period. They borrow at

interest rate rt to purchase capital, and they pay a wage rate wt for each unit of labor.
They sell off undepreciated capital at the end of each period.

- The firm’s problem can be written:

max
kt ,`t

F (kt , `t) + (1 − δ)kt − (1 + rt)kt − wt`t

- First-order conditions (FOCs):

kt : Fk(kt , `t) = rt + δ

`t : F`(kt , `t) = wt
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Neoclassical Growth Model: Competitive Equilibrium
- The competitive equilibrium of our economy consists of an allocation {ct , at , kt , `t}∞

t=0
and prices {wt , rt}∞

t=0 such that:
1. Household optimality: {ct , at}∞

t=0 solves the household’s problem, taking prices as given.
2. Firm optimality: {kt , `t}∞

t=0 solve the firm’s problem, taking prices as given.
3. Financial market clearing: at = kt for all t ( pins down rt : supply = demand for savings)
4. Labor market clearing: `t = 1 for all t (pins down wt : supply = demand for labor)
5. Resource constraint holds: kt+1 = (1 − δ)kt + F (kt , `t) − ct for all t

- Market clearing conditions say that supply = demand. Intuitively, these conditions pin
down prices: rt is set such that at = kt , and wt is such that lt = 1.

- Implicitly, these conditions also imply the goods market clears: output F (Kt , `t) goes to
consumption ct and investment (can you see how?)
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Neoclassical Growth Model: Competitive Equilibrium
- Competitive equilibrium in this neoclassical growth model is characterized by:

u′(ct) = β(1 + rt+1)u′(ct+1) Household Euler equation (1)
Fk(kt , `t) = rt + δ Firm FOC for k (2)
F`(kt , `t) = wt Firm FOC for w (3)

`t = 1 Labor market clearing (4)
at = kt Financial market clearing (5)

kt+1 = (1 − δ)kt + F (kt , `t) − ct Resource constraint (6)

- Together with an initial condition k0, these equations will tell us how the model changes
over time (for all t).

- But we can combine the information in these six equations to distill the whole model into
a system of two equations involving c and k.

7 / 27



Neoclassical Growth Model: Solving for Steady State
- Goal: derive difference equations for c and k expressing their t + 1 values in terms of t

values and constants. In particular, we want to substitute out prices (e.g. r and w) and
other endogenous variables (e.g. `).

- Start with Euler equation:

u′(ct) = β(1 + rt+1)u′(ct+1) (Euler equation)
= β(1 + Fk,t+1(kt+1, `t+1) − δ)u′(ct+1) (Firm FOC for k)
= β(1 + Fk,t+1(kt+1, 1) − δ)u′(ct+1) (Labor market clearing)

- This gives an equation that implicitly characterizes ct+1 as a function of ct , kt+1, and
constants.
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Neoclassical Growth Model: Solving for Steady State
- Recall the resource constraint (law of motion for capital):

kt+1 = (1 − δ)kt + F (kt , `t) − ct (Resource constraint)
= (1 − δ)kt + F (kt , 1) − ct (Labor market clearing)

- That was easy! Given this period’s capital and consumption, this difference equation tells
us what capital will be next period.

- Just to recap, we have the following two difference equations:

u′(ct) = β(1 + Fk(kt+1, 1) − δ)u′(ct+1) (7)
kt+1 = (1 − δ)kt + F (kt , 1) − ct (8)

- These play the same role that the difference equation for k played in the Solow model.
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Neoclassical Growth Model: Key Equations
- To solve for the steady state, impose ct = ct+1 = c∗ and kt = kt+1 = k∗. The equations

from the previous slide become:

u′(c∗) = β(1 + Fk(k∗, 1) − δ)u′(c∗) =⇒ Fk(k∗, 1) = β−1 − 1 + δ (9)
k∗ = (1 − δ)k∗ + F (k∗, 1) − c∗ =⇒ c∗ = F (k∗, 1) − δk∗ (10)

- Notice that (3) alone is sufficient to solve for k∗: If the production function is
Cobb-Douglas, i.e. F (K , L) = KαL1−α, can use algebra to solve for k∗ in terms of
parameters using only (3).

- Meanwhile, equation (4) has c∗ as a function of k∗.

- If we plot these equations in (c, k) space (c as a function of k), the steady state of the
neoclassical growth model is where the two lines intersect.
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Neoclassical Growth Model: Phase Diagram (Steady State)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

k∗

c∗
The steady state (c∗, k∗) oc-
curs where the lines intersect.

Explore later: these lines do
not generally intersect at the

maximum of the kt = kt+1 locus.

c

k
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Neoclassical Growth Model: Phase Diagram (Steady State)
- The previous graph demonstrates how we can analyze how the neoclassical growth

model’s steady state depends on the rest of the model.

- We can already answer questions like, “How does a change in some parameter (e.g. β ↓)
impact steady state consumption (c∗) or capital (k∗)?”

- What about how other endogenous variables are impacted at the steady state (e.g. r∗,
w∗)? Once we’ve figured out (k∗, c∗), can determine the steady state value
corresponding to other endogenous variables through any of our equilibrium conditions.

- Example: Suppose we want to know what happens to the steady state wage, w∗, when
β ↓. You could figure out how such a change impacts the wage at steady state by using
the other equilibrium conditions, e.g. FL(kt , 1) = wt (firm FOC plus labor market
clearing), so w∗ = FL(k∗, 1).
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗

c0

c1

c2

k0 k1 k2

c∗

k∗

Consider an initial capital
level k0 < k∗ as drawn.

The c0 corresponding to k0 must
lie on the red line: otherwise,

consumption and capital would not
converge to the steady state, but
would instead shoot off (following
the traffic signals) toward 0 or ∞.

After period 0, ct and kt follow their
difference equations (staying on the
red line) back to the steady state.

c

k
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Neoclassical Growth Model: Dynamics
- That’s it for steady states. But what happens to c, k, etc. in the short-run, i.e. as the

economy converges toward steady state?

- This is a harder question, and we need to draw another line on our phase diagram.

- This line goes by many names: Ludwig called it the optimal consumption rule/policy; it
also goes by the term ’policy function’ (much more general term) or the ’saddle path’ of
this model.

- In the interest of time, in this week’s section we’ll presume such a line exists, and not
show why it takes the shape it does - see the Section 3 slides or textbook (Kurlat/Romer)
for more information on that.
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗

k0

Last week’s section slides went
into detail on why this red line

exists. It will always have this shape
(southeast to northeast quadrants of
regions defined by these two lines).

Analytically, it turns out the red line
does not generally have a closed

form solution. But even just drawing
a graph like this will help us under-
stand how the model behaves in the

transition to a new steady state.

c

k
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Neoclassical Growth Model: Dynamics
- Model exhibits what is sometimes called saddle path stability: for any given k0, there is

precisely one value of consumption c0 that returns to the steady state. Any other value
(even a little bit higher or lower!) would ’explode off’ toward 0 capital or 0 consumption -
inconsistent with utility maximization.

- As you can see: analyzing steady state dynamics (how does the steady state change if a
parameter changes?) is much easier than analyzing transition dynamics.

- To answer what happens to variables in the steady state, we can use algebra (with our key
difference equations, imposing steady state), or we can use the graphs and figure out how
a parameter changing shifts our lines. The steady state always occurs at the intersection
of the blue and green lines, but only values on the red line are attained in equilibrium.
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Neoclassical Growth Model: Phase Diagram (Example)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c0

c1

k0

c∗

k∗

β ↓

A

B

C

β ↓β ↓

Starting at a steady state
(c0, k0), what happens if β ↓?

β ↓ shifts the green locus
inwards (why?). The new

steady state has lower c and k.

On the transition path, c is
higher! (less savings). Shoot

up to point B. Then follow new
optimal consumpton path down
to new steady state (c∗, k∗).

c

k
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Neoclassical Growth Model: Dynamics
- How do we determine how variables like rt and wt adjust in response to β ↓ on the

previous slide? The issue is they’re not in the diagram directly.

- The conditions described in our definition of competitive equilibrium must hold. So we
use our graph to figure out what happens to k and c when an exogenous variable changes
(e.g. β ↓), and then use e.g. firm/household optimality conditions and market clearing
conditions to deduce what’s happened to the other variables.

- Example: firm FOC for k is FK (kt , `t) = rt + δ. Since `t = 1 when the labor market
clears, this becomes FK (kt , 1) = rt + δ. So in equilibrium, rt is a function of kt : once I
know how kt changes (e.g. due to β ↓), I can use this relationship to see how rt changes.

- In our example in the previous slide, rt does not adjust immediately (when the economy
moves from point A to B), but slowly rises as the economy moves down the red line from
B to C (as capital shrinks toward the new, lower steady state, MPK rises, so through the
firm FOC rt must rise as well).
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Neoclassical Growth Model: Recap
- We have nice, closed-form solutions for the steady state values c∗ and k∗ in this model.

We can obtain them from setting ct = ct+1 = c∗ and kt = kt+1 = k∗ in our key
difference equations and using algebra to rearrange.

- The red line in our phase diagram indicates the path of values that consumption and
capital can take in this model. We do not actually have a closed form equation
characterizing the red line. Solving for this (sometimes called a policy function) is
beyond on the scope of this course, requiring some numerical approximation tools. So for
transition dynamics in this model (assessing what happens to c, k, w , r etc if some
parameter changes), the graphical approach is best. We have waved our hands a bit on
this out of necessity.

- The neoclassical growth model is therefore a little delicate in the transition. You are not
expected to know about saddle path stability - Ludwig intentionally did not raise these
points in lecture. I’m presenting them just to provide additional context.
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Big Push Model
- Now, change gears entirely and discuss the ’big push’ model – essentially a very slight

extension of the Solow model that Ludwig discussed in lecture.

- We will use this big push model to introduce the concept of multiple equilibria and
equilibrium stability.

- So far, the models we’ve seen (Solow, neoclassical growth) have had a very special
property, a unique steady state (given parameters) that does not depend on initial
conditions.

- No matter what your initial k0 is, you converge to some k∗ that is unique given the
parameters of the model in Solow and neoclassical growth.

- But in the big push model, this isn’t true!
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Big Push Model
- Big Push model is exactly the same ass Solow, but with a modified production function:

Yt = F (Kt , Lt) =

{
Kα

t (ALLt)1−α if K/L < k̄
Kα

t (AHLt)1−α − φ if K/L ≥ k̄

with AH > AL, φ > 0, and k̄ an exogenous ’threshold’.

- Intuition: firms with low levels of capital k < k̄ use an inefficient technology given by the
first row, firms with high levels of capital use a more efficient technology.

- This production function looks like two different Cobb-Douglas production functions
pasted together! Importantly, this production function is not concave everywhere (and in
fact isn’t differentiable at k̄)!

- The Big Push model still has the same key phase diagram that we had in Solow, but now
it crosses the 45 degree line multiple times!
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Big Push Model
- Remainder of the model is exactly like Solow:

Kt+1 = (1 − δ)Kt + It (Law of motion for capital)
It = s · Yt (Investment is some fraction of output)

Lt+1 = (1 + n)Lt (Law of motion for population)
kt ≡ Kt

Lt
(Definition of capital per worker)

yt ≡ Yt
Lt

(Definition of output per worker)

- Leads to the same key difference equation (with a different production function, which is
now piecewise per the previous slide):

kt+1 =
1

1 + n

[
s · F (kt , 1) + (1 − δ)kt

]
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Big Push: Phase Diagram
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Big Push Model: Equilibrium Stability
- Key difference equation kt+1 = s · F (kt , 1) + (1 − δ)kt crosses the 45 degree line

kt+1 = kt not just once, but three times!

- Now, it’s reasonable to ask which equilibrium we return to starting from any initial k0. An
equilibrium level of capital k∗ is said to be stable in this model if any point in some small
neighborhood (k∗ − ε, k∗ + ε) will return to that equilibrium.

- There are two stable equilibria and one unstable equilibrium in this model. Can you see
graphically which are which? To answer, you just need to know whether capital is growing
or shrinking at each leve of k.
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Big Push: Phase Diagram
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Big Push Model: Equilibrium Stability
- Easiest to analyze stability case-wise, by considering how k would change on either side of

all (3, in this case) equilibria.

- Notice that the production function lies above the 45 degree line below A and below the
45 degree line above A. That implies that the ’low’ equilibrium, A, is stable.

- Likewise, exactly the same for the ’high’ equilibrium C , which is also stable. Capital just
above or below C will return to C .

- The third equilibrium, B, is unstable. The only way you can reach equilibrium B in this
smodel is if you begin exactly at B! Capital just above or below B will return to the other
two (stable) equilibria, A or C .
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Big Push Model: Conclusion
- Pragmatically, we discussed the Big Push model because it’s the simplest way we can

introduce the idea of multiple equilibria (which we hadn’t seen before) - an interesting
property of some models. Existence and uniqueness of a steady state are both nontrivial,
and sometimes our models can have multiple steady states!

- Most models we see in this course will be deliberately rigged up so as to not have
multiple equilibria (original Solow, neoclassical growth); but in the Big Push model, the
existence of multiple equilibria is a feature, and not a bug.

- Intuition: possible for economies to get stuck at the ’low’ or ’bad’ equilibrium. Small
capital investment not sufficient to lift the economy from low equilibrium A to high
equilibrium C : need a ’big push’ that lifts the economy past the unstable equilibrium B.
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