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From Solow to the Neoclassical Growth Model
- The goal of this week is to develop a growth model that builds on the Solow model we

developed in week 1, using the consumption/savings framework we developed in week 2.

- Remember that in Solow, we simply assumed that the savings rate, s, was fixed.

- But we know from micro data (on individual households) and from macro data (on
aggregate savings/consumption) that savings rates are not fixed (in aggregate or at the
individual level).

- By embedding the consumption-savings framework inside Solow, we’ll be ’endogenizing’
the savings decision in the context of the model.
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From Solow to the Neoclassical Growth Model
- Going forward, models in this course will generally involve the same elements:

1. Optimization: Households choose things (i.e. consumption, savings, labor supply) to
maximize utility subject to constraints; firms choose things (i.e. input demands) to maximize
profits subject to constraints.

2. Equilibrium conditions: equations describing how supply and demand interact; for instance,
prices are set such that supply equals demand (e.g. for capital, for consumption goods, for
labor).

3. Resource constraints: Economy-wide resource constraints hold. For instance, capital evolves
according to a law of motion.

- Modern macro also includes an ’aggregation’ step. In our models so far (and most places
elsewhere in this course), aggregation will be trivial. This is only because allowing for
heterogeneous households complicates the math quite a bit: but there are many places in
macro where this is really important (e.g. studying inequality).

- This framework allows for us to incorporate arbitrary ’frictions’: borrowing constraints,
behavioral agents, monopolistic competition, etc.
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Neoclassical Growth Model: Household Problem
- Time is discrete, indexed t = 0, 1, 2, .... A representative household chooses consumption

ct and savings at+1 each period to maximize the present discounted value of lifetime
utility, subject to their budget constraint.

- The household receives labor income wt (from inelastically supplying one unit of labor)
and interest income (1 + rt)at from last period’s savings at .

- The household’s problem can be written as (with period budget constraints):

max
{ct ,at+1}∞

t=0

∞∑
t=0

βtu(ct) subject to ct + at+1 = (1 + rt)at + wt

a0 given

where the household takes initial savings a0, the interest rate rt , and the wage wt as given.
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Neoclassical Growth Model: Household FOCs
- The (present value) Lagrangian associated with this problem is:

L =
∞∑

t=0
βt

[
u(ct) + λt

(
(1 + rt)at + wt − ct − at+1

)]

- Notice that the Lagrangian multiplier is indexed by t - one constraint each period!

- When we differentiate L with respect to at+1, it shows up in λt and λt+1 (why?)

- The first-order conditions for this problem:

ct : u′(ct) = λt

at+1 : βtλt = βt+1λt+1(1 + rt+1)

- As in the consumption-savings model, we combine them to derive the Euler equation:

u′(ct) = β(1 + rt+1)u′(ct+1)
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Neoclassical Growth Model: Firm Problem
- The firm’s problem is to choose capital kt and labor `t to maximize profits each period t.

The firm produces output using a CRS production function F (kt , lt), with the price of the
output good being normalized to 1. The firm borrows at an interest rate rt to purchase
capital, and they sell off undepreciated capital at the end of each period. Lastly, they pay
a wage rate wt for each unit of labor they hire.

- The firm’s problem can be written:
max
kt ,`t

F (kt , `t) + (1 − δ)kt − (1 + rt)kt − wt`t

- FOCs are really easy: no constraint above, so no need for Lagrangian:
kt : Fk(kt , `t) = rt + δ

`t : F`(kt , `t) = wt

- Interpretation: The firm will hire labor/capital up until the point where the marginal
product of labor/capital is smaller than the (constant) cost of labor/capital.
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Neoclassical Growth Model: Competitive Equilibrium
- The competitive equilibrium of our economy consists of an allocation {ct , at , kt , `t}∞

t=0
and prices {wt , rt}∞

t=0 such that:
1. Household optimality: {ct , at}∞

t=0 solves the household’s problem, taking prices as given.
2. Firm optimality: {kt , `t}∞

t=0 solve the firm’s problem, taking prices as given.
3. Financial market clearing: at = kt for all t
4. Labor market clearing: `t = 1 for all t
5. Resource constraint holds: kt+1 = (1 − δ)kt + F (kt , `t) − ct for all t

- Technical note: goods market clearing is implied by (3-5). At a deep level, this follows from
Walras’ Law in micro: N − 1 markets clearing implies the last market clears in general equilibrium..

- Notice that this is a road-map to solve the model! 6 unknowns (prices, quantities) and 6
equations (firm optimality has 2 FOCs).
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Neoclassical Growth Model: Competitive Equilibrium
- Intuitively, competitive equilibrium is the outcome that prevails when agents in our model

(households, firms) are acting in their own self-interest (maximizing profit/utility),
markets clear (prices are set such that supply equals demand), and any economy-wide
resource constraints hold.

- The definition of competitive equilibrium pins down exactly what values our endogenous
variables will take in equilibrium. It also provides a road-map to solving the model, by
reminding us what equations we need to solve for the unknown endogenous variables
(market clearing, FOCs).

- Because agents are acting in their own self-interest, it is always worth asking: in a given
model, could we do better than the competitive allocation? We might if, for instance,
there are externalities that agents in our model are not internalizing. More later!
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Neoclassical Growth Model: Solving for Steady State
- Goal: derive difference equations for c and k expressing their t + 1 values in terms of t

values and constants. In particular, we want to substitute out prices (e.g. r and w) and
other endogenous variables (e.g. `).

- Start with Euler equation:

u′(ct) = β(1 + rt+1)u′(ct+1) (Euler equation)
= β(1 + Fk,t+1(kt+1, `t+1) − δ)u′(ct+1) (Firm FOC for k)
= β(1 + Fk,t+1(kt+1, 1) − δ)u′(ct+1) (Labor market clearing)

- This gives an equation that implicitly characterizes ct+1 as a function of ct , kt+1, and
constants.
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Neoclassical Growth Model: Solving for Steady State
- Recall the resource constraint (law of motion for capital):

kt+1 = (1 − δ)kt + F (kt , `t) − ct (Resource constraint)
= (1 − δ)kt + F (kt , 1) − ct (Labor market clearing)

- That was easy! Given this period’s capital and consumption, this difference equation tells
us what capital will be next period.

- Just to recap, we have the following two difference equations:

u′(ct) = β(1 + Fk(kt+1, 1) − δ)u′(ct+1) (1)
kt+1 = (1 − δ)kt + F (kt , 1) − ct (2)

- These play the same role that the difference equation for k played in the Solow model.
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Neoclassical Growth Model: Key Equations
- To solve for the steady state, impose ct = ct+1 = c∗ and kt = kt+1 = k∗. The equations

from the previous slide become:

u′(c∗) = β(1 + Fk(k∗, 1) − δ)u′(c∗) =⇒ Fk(k∗, 1) = β−1 − 1 + δ (3)
k∗ = (1 − δ)k∗ + F (k∗, 1) − c∗ =⇒ c∗ = F (k∗, 1) − δk∗ (4)

- Notice that (3) alone is sufficient to solve for k∗: If the production function is
Cobb-Douglas, i.e. F (K , L) = KαL1−α, can use algebra to solve for k∗ in terms of
parameters using only (3).

- Meanwhile, equation (4) has c∗ as a function of k∗.

- If we plot these equations in (c, k) space (c as a function of k), the steady state of the
neoclassical growth model is where the two lines intersect.

12 / 28



Neoclassical Growth Model: Dynamics
- So, the steady state is easy enough to characterize: equations (3) and (4) will do. We

can use those equations to think about how the steady state/long-run equilibrium will
change when e.g. a parameter changes.

- But how do we think about changes in the short-run, or the transition path to the steady
state?

- Multiple difference equations can be complicated to interpret on their own. One useful
graphical tool to think about how ct+1 and Kt move toward the balanced-growth path
from any initial condition (i.e. initial capital stock, or initial savings) is a phase diagram,
which work especially well for two-equation systems.

- Our model involves c and K , so those will be the axes. In this space, we plot our
difference equations, imposing ct+1 = ct and Kt+1 = Kt .
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Neoclassical Growth Model: Dynamics
- Before I go through these plots, I want to emphasize that the elements of the figure I’m

about to draw are not exam-eligible per se. Ludwig did not cover them in lecture.

- I want to work through the “full” phase diagram for the neoclassical growth model for
two reasons:

1. It is a very common part of the canonical neoclassical growth model, and may help you
understand these parts of the textbook readings better

2. I believe it may help you understand where the optimal consumption path comes from in this
model (and in Ludwig’s phase diagram from lecture 5 slides).
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Neoclassical Growth Model: Phase Diagram (Steady State)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

k∗

c∗
The steady state (c∗, k∗) oc-
curs where the lines intersect.

Explore later: these lines do
not generally intersect at the

maximum of the kt = kt+1 locus.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)
c

k
0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

c∗

Below curve, kt+1 > kt

Above curve, kt+1 < kt

Capital is growing (kt+1 > kt)
below the blue line, and shrinking
(kt+1 < kt) above the blue line.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗

Left of curve
ct+1 > ct

Right of curve
ct+1 < ct

Consumption is growing (ct+1 > ct)
left of the green line, and shrinking
(ct+1 < ct) right of the green line.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗ The “traffic arrows” we’ve drawn
indicate the paths that consump-

tion and capital must follow.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗ The only values that consumption
and capital will take in equilibrium

are on the red line – the saddle
path. This is the unique path

that returns to the steady state.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗

c0

c1

c2

k0 k1 k2

c∗

k∗

Consider an initial capital
level k0 < k∗ as drawn.

The c0 corresponding to k0 must
lie on the red line: otherwise,

consumption and capital would not
converge to the steady state, but
would instead shoot off (following
the traffic signals) toward 0 or ∞.

After period 0, ct and kt follow their
difference equations (staying on the
red line) back to the steady state.

c

k
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Neoclassical Growth Model: Phase Diagram (Transition Dynamics)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c∗

k0

Why must c lie on the red
line? What does it mean for
a consumption path to not
converge to steady state?

The yellow lines depict what
would happen if c0 was not on
the optimal consumption path,
given k0 < k∗. For each value
of k, there is exactly one point
on the red line; the red line is

sometimes called a ’saddle path’.

c

k
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Neoclassical Growth Model: Dynamics
- Model exhibits what is sometimes called saddle path stability: for any given k0, there is

precisely one value of consumption c0 that returns to the steady state. Any other value
(even a little bit higher or lower!) would ’explode off’, given the traffic arrows we drew,
toward 0 capital or 0 consumption.

- As you can see: analyzing steady state dynamics (how does the steady state change if a
parameter changes?) is much easier than analyzing transition dynamics.

- To answer what happens to variables in the steady state, we can use algebra (with our key
difference equations, imposing steady state), or we can use the graphs and figure out how
a parameter changing shifts our lines. The steady state always occurs at the intersection
of the blue and green lines, but only values on the red line are attained in equilibrium.
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Neoclassical Growth Model: Steady State and Transitions
- We can ask what happens (1) to the steady state and (2) on the transition path (to the

new steady state) when a parameter in this model changes: for instance, β, α, or δ.

- What happens to steady-state capital and consumption if β falls? If we were at the steady
state prior to β falling, how does consumption respond immediately after the steady state?

- What about if δ falls? Make sure to ask what happens to both lines!
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Neoclassical Growth Model: Phase Diagram (Example)

0

kt = kt+1 : c∗ = F (k∗, 1) − δk∗

ct = ct+1 : Fk(k∗, 1) = β−1 − 1 + δ

c0

c1

k0

c∗

k∗

β ↓

A

B

C

β ↓β ↓

Starting at a steady state
(c0, k0), what happens if β ↓?

β ↓ shifts the green locus
inwards (why?). The new

steady state has lower c and k.

On the transition path, c is
higher! (less savings). Shoot

up to point B. Then follow new
optimal consumpton path down
to new steady state (c∗, k∗).

c

k
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Neoclassical Growth Model: Phase Diagram vs. Lecture
- The preceding figures are the canonical phase diagrams for neoclassical growth, exactly as

they appear in our textbooks (Kurlat Fig 9.3.1; Romer Figs. 2.2, 2.3, 2.4)

- The phase diagram in the Lecture 5 slides is a somewhat simplified version of these
graphs, intended to convey just the key intuition.

- The red line on the phase diagram (known as the saddle path/optimal consumption
path/policy function) is not given by either of the difference equations in the model per
se: the difference equations give us the ’traffic arrows’. The orange line represents the
only set of points in (c, k) space for which this model converges back to the steady state
when we apply the difference equations.

- In fact, there isn’t even a closed-form solution for the red line generally! To solve for the
red line (which is generally not linear as drawn), you need to use numerical approximation
techniques - beyond the scope of 1011B.
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Neoclassical Growth Model: Recap
- We have nice, closed-form solutions for the steady state values c∗ and k∗ in this model.

We can obtain them from setting ct = ct+1 = c∗ and kt = kt+1 = k∗ in our key
difference equations and using algebra to rearrange.

- The red line in our phase diagram indicates the path of values that consumption and
capital can take in this model. We do not actually have a closed form equation
characterizing the red line. Solving for this (sometimes called a policy function) is
beyond on the scope of this course, requiring some numerical approximation tools. So for
transition dynamics in this model (assessing what happens to c, k, w , r etc if some
parameter changes), the graphical approach is best. We have waved our hands a bit on
this out of necessity.

- The neoclassical growth model is therefore a little delicate in the transition. You are not
expected to know about saddle path stability - Ludwig intentionally did not raise these
points in lecture. I’m presenting them just to provide additional context.
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Neoclassical Growth Model: Centralized Equilibrium / Planner’s Problem
- The competitive equilibrium we have solved for is sometimes called a decentralized

equilibrium, because individual economic actors (households and firms) make their
decisions independently in their own self-interest.

- It is worth asking: If we could directly assign allocations to people (i.e. force households
and firms to adopt the consumption/savings and input demand profiles we want, in order
to maximize the household’s utility), could we do better than the competitive equilibrium?

- This perspective is sometimes called the planner’s problem, or the centralized equilibrium.
It’s a hypothetical benchmark that is easier to solve, and doesn’t involve prices (because
there are no markets - allocations are assigned, not bought and sold). We only have to
solve one problem rather than every agents’ separately!

- This is ’bonus content’ in Ludwig’s lectures – not essential, but included here because we
have time.
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Neoclassical Growth Model: Centralized Equilibrium / Planner’s Problem
- The planner’s problem in this case is to choose consumption and capital to maximize

utility:

max
{ct ,Kt+1}∞

t=0

∞∑
t=0

βtu(ct) subject to Kt+1 = (1 − δ)Kt + F (Kt , 1) − ct

K0 given

- The planner’s only constraint is the economy-wide resource constraint (e.g. the law of
motion for capital). We can solve this by setting up a Lagrangian, as before.

- (Practice problem) Can show that the first-order condition is exactly the same as the
household’s problem - leads to the same difference equations governing the model as the
competitive equilibrium.

- Therefore, the competitive equilibrium and the planner’s equilibrium coincide. The
competitive equilibrium, in this environment, is optimal (are you surprised? why or why
not?)
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Bonus Slides
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Bonus Slides: First Fundamental Theorem of Welfare Economics
- Can we ever improve on the outcomes delivered by private markets? Sometimes - even if

the markets are perfectly competitive! But when, and how? What does it mean for an
allocation (of goods, productive inputs, etc) to be efficient? Under what conditions is a
competitive equilibrium efficient?

- We’ve now developed theoretical tools that we can use to answer these questions for any
economic model.

- With a little more mathematical sophistication, we could extend this framework to a case
with many heterogeneous consumers and a notion of social welfare.

- This is an important topic in the field of public economics, with substantial intersection
with macro.
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Bonus Slides: Pareto Efficiency
- First, we need to carefully define what we mean for an outcome (allocation) to be

efficient. Many definitions exist.

- Strongest, most common, notion of allocative efficiency: Pareto efficiency. In words: an
allocation is Pareto efficient if you cannot change the allocation to make everyone
(weakly) better off without making at least one person worse off.

- Key virtue of Pareto efficiency: does not rely on interpersonal comparisons (“we both
want this good, but Mike wants it more!”). In our models so far, not an issue, we’ve
assumed a single (representative) consumer/household. But if we have two or more
distinct (heterogeneous) households, this matters a great deal!

- Key drawback of Pareto efficiency: Very strong, hard-to-satisfy criterion. In the real
world, Pareto efficient allocations or Pareto-improving policies are hard to come by.
Policies and interventions almost always generate both winners and losers.
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Bonus Slides: First Fundamental Theorem of Welfare Economics
First fundamental theorem of welfare economics
If an economy is characterized by:

1. Perfectly competitive markets (individuals, firms are price-takers)
2. Perfectly rational agents who realize their optimal choices
3. Complete markets and information
4. No externalities

Then the competitive (decentralized) equilibrium is Pareto efficient.

- This is a theorem – a rigorously-proven statement that provides sufficient conditions for
an equilibrium allocation in a given model to be Pareto efficient.

- This is one of the most powerful and important results in economic theory. It captures
the notion of Adam Smith’s invisible hand. In this environment, price signals allow
markets to allocate goods and productive inputs into the hands of those who value them
most. It relies on very strong assumptions, all of which are suspect in the real world.
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Bonus Slides: First Fundamental Theorem of Welfare Economics
- Strictly speaking, the first welfare theorem provides sufficient conditions for the

competitive equilibrium to be efficient. But deviations from the (very strong) premises in
the welfare theorem often indicate the competitive equilibrium is not Pareto efficient.

- For any given model, we can always solve for either a competitive equilibrium or a
hypothetical centralized equilibrium in order to address whether they coincide. In they
neoclassical growth model, they do: this model satisfies the premises of the first welfare
theorem.

- When does this matter in the real world? All of the premises are suspect – for instance, I
can’t name any real-world market that is truly perfectly competitive.

- Real-world policy might be aimed at restoring the premises of the theorem, e.g. by
correcting externalities, alleviating frictions that prevent agents from realizing their
optimal choices (e.g. borrowing constraints), making markets more competitive.
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